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Mutually recursive definition of streams
E.g., take Lustre, Scade, Lucid Synchrone, FRP, Zelus, Simulink, etc.

An old question:
Is the system reactive/productive/deadlock-free, that is, at every in-
stant and for any valid input, does it produce an output?

Semantically: every reaction is the result of a fix-point computation
starting with ⊥ (deadlock).

A main system is causally correct (dynamically) when, provided inputs are
̸= ⊥, outputs are ̸= ⊥.

Causality is a semantical property: it depends on the semantics of
primitives.

E.g., interpreting if/then/else strictly or lazilly, the or to be strict,
sequential or parallel leads to different causalities.
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Causality analyses

The causality analysis computes a static over-approximation.

To ensure that the final main system is (dynamically) causal.
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Causality analysis in synchronous programs

The simplest is that of Lustre [5, 9]: build a dependence graph; check the
graph is acyclic.

Esterel and Signal compilers implemented a more expressive analysis which
involves boolean reasonning.

E.g., Two equations in parallel 1

(* [c, i1, i2] are inputs *)
x = if c then i1 else y and y = if c then x else i2

Lustre semantics: It is not causal because if/then/else is strict, that is,
given an input environment [c0/c , v1/i1, v2/i2], lfp is [⊥/x ,⊥/y ].

Signal semantics: It is causal because if/then/else is lazy, that is, given
[c0/c , v1/i1, v2/i2, lfp is [v/x , v/y ] with v = mux(c0, v1, v2).

1written in Zelus syntax.
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Written in Esterel
The program is rejected by a Lustre compiler; it is accepted by a Signal
compiler.

Its Esterel version is semantically causally correct too.

It is accepted and compiled by an Esterel compiler that follows [3].

[present c then
[present i1 then emit x]
else

[present y then emit x]
] ||
[present c then

[present x then emit y]
else

[present i2 then emit y]
]
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Causality analysis in synchronous programs

None of the causality analyses in Lustre, Esterel, Signal was modular.

A modular causality analysis was done for LS [8].

I can be expressed as a type system; it is implemented in Scade 6 [7] and
Zelus [4].

The analysis is unconditional: an expression either (always) depend on an
input or never.

6 / 46



Two examples in Esterel
The program P13 from the Esterel primer V5.91.
https://github.com/marcpouzet/zrun/blob/work/tests/good/
esterel-primer-p13.zls

(* Section 5.1.4 *)
module P13:

input I;
output O1, O2;
present I then

present O2 then emit O1 end
else

present O1 then emit O2 end
end present

end module

A naive, graph-based analysis, would reject it because of an apparent cycle
(o1 depends on o2; o2 depends on o1).

Nonetheless, it is causal and is accepted by Esterel compilers.
7 / 46

https://github.com/marcpouzet/zrun/blob/work/tests/good/esterel-primer-p13.zls
https://github.com/marcpouzet/zrun/blob/work/tests/good/esterel-primer-p13.zls


The program P14 from the Esterel primer V5.91.
https://github.com/marcpouzet/zrun/blob/work/tests/good/
esterel-primer-p14.zls

module P14:
output O1, O2;
present O1 then emit O2 end;
pause;
present O2 then emit O1 end

end module

It is causal and is accepted by Esterel compilers.
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Expressed in Lustre, P13 is not causal.
node p13(i) returns (o1, o2)

let
(o1, o2) =
if i then if o2 then (true, false) else (false, false)
else if o1 then (false, true) else (false, false);

tel;

node p13(i) returns (o1, o2)
let

o1 = if i then if o2 then true else false else false;
o2 = if i then false else if o1 then true else false;

tel;

node p13(i) returns (o1, o2)
let

o1 = i & o2;
o2 = not i & o1;

tel;

Starting with [⊥/o1,⊥/o2] and, for any value v for i , the least solution for
the equation that defines o1 and o2 is [⊥/o1,⊥/o2]. 9 / 46



But...
P13 can be written in Scade/Zelus using a by-case definition of streams:

node p13(i) returns (o1 default false, o2 default false)
if i then
do if o2 then o1 = true done

else
do if o1 then o2 = true done

which is a short-cut notation for:

node p13(i) returns (o1, o2)
if i then
do if o2 then o1 = true else o1 = false
and o2 = false done

else
do if o1 then o2 = true else o2 = false
and o1 = false done

The two are causal for trivial reasons, without any boolean reasonning or
complicated machinery.
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By-case definitions [6]
Suppose that E1 and E2 are two equations. E1 define the set of variables
N1; E2 defines the set of variables N2.

The by-case definition if/then/else defines variables in n ∈ N1 ∪ N2.

If an equation is missing for n in a branch, n gets a default value. Either
that given at the declaration; or its previous value (n = last n).

local x default 42, y do
if c then x = f(y) else y = g(x)

means:
local x, y do
if c then do x = f(y) and y = last y done
else do y = g(x) and x = 42 done

The by-case construction generalizes to other control structures, e.g.,
automata. The causality analyses exploits the by-case definitions of
streams.
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Two classical examples that are causally correct but are rejected by the
compilers of Lustre, Scade, Zelus.
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The cyclic circuit of Malik
https:
//github.com/marcpouzet/zrun/blob/work/tests/good/malik.zls
let node mux(c, x, y) returns (o) if c then o = x else o = y

let node f(x) returns (o) o = 2 * x
let node g(x) returns (o) o = x - 1

let node fog_gof(c, x) returns (y)
local x1, x2, y1, y2
do x1 = mux(c, x, y2)
and x2 = mux(c, y1, x)
and y1 = f(x1)
and y2 = g(x2)
and y = mux(c, y2, y1)
done

(* It is equivalent to *)
let node fog_gof_reference(c, x) returns (y)

y = mux(c, g(f(x)), f(g(x)))
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The cyclic token ring arbiter

https://github.com/marcpouzet/zrun/blob/work/tests/good/
arbiter.zls
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Constructive causality
(* Constructiveness in the sense of Esterel *)
(* Verbatim from The Esterel Primer, V5.91, Berry, 2000
*-
*- 1. An unknown signal can be set present if it is emitted.
*- 2. An unknown signal can be set absent if no emitter

can emit it.
*- 3. The then branch of a test can be executed if the

test is executed and the signal is present.
*- 4. The else branch of a test can be executed if the

test is executed and the signal is absent.
*- 5. The then branch of a test cannot be executed if the

signal is absent.
*- 6. The else branch of a test cannot be executed if the

signal is present.
*)

(* Moreover, Esterel makes a special treatment of the two
boolean operators

*- (or and &) that are considered parallel and not sequential.
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The problem we consider

Some equations deadlock like x = x + 1 or x = y and y = x.

A language with only length-preserving stream functions.

• Lifting: lift a scalar into a constant stream; a n-ary function to apply
pointwise.

• A unit delay, initialized or not. E.g., (x : xs) fby ys = x : ys.
• function definition and application, possibly higher-order.
Detect and reject stream equations that are not productive, i.e., ensure
that all streams are infinite
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Several works address the question of productivity and proof techniques for
languages manipulating infinite data structures.

Hamming’s exercise in SASL. [Dijkstra, 1981]

On the productivity of recursive list definitions. [Sijtsma, 1989].

Proving the correctness of reactive systems using sized types. [Hugues &
Pareto & Sabry, 1996];

Guarded recursion in proof assistants. E.g.,:

Infinite objects in type theory. [Coquand, 1993];

Structural recursive definitions in type theory. [Gimenez, 1994];

Termination checking in the presence of nested inductive and coinductive
types. [Danielson, Altenkirch, 2010];
Beating the Productivity Checker Using Embedded Languages. [Danielson,
2010];
(Many others: Abel, Bertot, Buchholz, Di Gianantonio & Miculan, Hancock
& Pattinson & Ghani, McBride, Morris & Altenkirch & Ghani, etc.)
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Related works

Those works consider a more general language where stream functions can
be length preserving or not and/or mixed with inductive structures.

E.g: is the following equation productive?

x = 0 : 1 : tl x

where tl (x : xs) = xs

We only have an operator “delay” that make streams longer but not
shorter. 2

We adress a simpler problem: we forbid to write tl which is not length
preserving.

2tl can be defined by tl x = x when (false fby true). when is not a length
preserving function.
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Operators

Hence, the language has essentially the following features:
1. Define mutually recursive equations;
2. point-wise application of an operations (e.g., +);
3. unit delay: pre, fby.
4. The non length preserving operators: when and merge are considered as

if they were length preserving, from the causality analysis point-of-view.
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A trivial solution

Build a dependence graph from the syntax such that:
• For every equation x = e, state that x depends on all variables

appearing in e but those on the right of a unit delay (pre or fby).
• compute the transitive closure;
• reject recursive definitions if the corresponding graph is cyclic.
This solution is easy to implement. It accepts:

let node int(x’) = x where
rec x = 0 fby (x’ + 1)

let node fix(g)(x0) = x where
rec x = g(x0 fby x) in x
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But rejects:

let node f(x) = (y, z) where
rec (y, z) = let t = x + 1 in (z, t)

let node copy(x, y) = (x, y)

let node main(x) = (t, u) where
rec = copy(x, t)

It is very sensitive to naming and the syntactic structure. It does not treat
modularity — the ability to define a function, compute some information
about it once and reuse it later.
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We propose a type based representation of input/output dependences.

The idea of representing causality information as a type was firt introduced
in the language Lucid Synchrone [8].

This is the way it is done in Scade [7] but for a first-order language only.

Here, we go a bit further by considering higher order with a new
formulation of dependences and algorithm for type simplification.

A preliminary solution was published in [2]. What is presented today is
implemented in the Zelus compiler since 2017 but was never published.
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Examples in Zélus 3

3zelus.di.ens.fr
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Summary
• Represent the instantaneous input/output dependence by a type
• A stream expression is associated to a tag.
• A partial order between those tags.
let node f(x, y, z) = x + y, y + z

let node forward_euler(t)(k, x0, u) = output where
rec output = x0 -> pre (output +. (k *. t) *. u)

let node backward_euler(t)(k, x0, u) = output where
rec output = x0 -> (pre output) +. (k *. t) *. u

let node filter(n)(h)(k, u) = udot where
rec udot = n *. (k *. u -. f)
and f = forward_euler(h)(n, 0.0, udot)

val f : {’a < ’b , ’c}. ’c * ’a * ’b -> ’c * ’b
val forward_euler : {}. ’a -> ’a * ’b * ’a -> ’b
val backward_euler : {}. ’a -> ’a * ’a * ’a -> ’a
val filter : {}. ’a -> ’b -> ’b * ’b -> ’b
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let node bad_filter(n)(h)(k, u) = udot where
rec udot = n *. (k *. u -. f)
and f = backward_euler(h)(n, 0.0, udot)

File "examples.zls", line 17, characters 10-41:
> and f = backward_euler(h)(n, 0.0, udot)
> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Causality error: This expression has causality type
’c, whereas it should be less than ’d
Here is an example of a cycle:
f at ’d < udot at ’c; udot at ’c < f at ’d
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Higher order
A function can have an argument which is a function.

let node gfilter(int)(h)(n)(k, u) = udot where
rec udot = n *. (k *. u -. f)
and f = run (int(h)) (n, 0.0, udot)

let node gpid(int)(filter)(h)(p, i, d, u) = c where
rec c_p = p *. u
and i_p = run (int h)(i, 0.0, u)
and c_d = run (filter h)(d, u)
and c = c_p +. i_p +. c_d

val gfilter :
{’a < ’b}. (’c -> ’a * ’d * ’b -> ’b) -> ’c ->

’a -> ’b * ’b -> ’b
val gpid :

{’a < ’b}.
(’c -> ’d * ’e * ’a -> ’b) ->
(’c -> ’f * ’a -> ’b) -> ’c -> ’b * ’d * ’f * ’a -> ’b
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Higher order
let node filter_forward(h)(n)(k, u) =

generic_filter(forward_euler)(h)(n)(k, u)

val filter_forward : {’a < ’b}. ’b -> ’a -> ’a * ’a -> ’a

(* This program is not causal *)
(* let node filter_backward(h)(n)(k, u) =

generic_filter(backward_euler)(h)(n)(k, u) *)

> gfilter(backward_euler)(h)(n)(k, u)
> ^^^^^^^^^^^^^^^^
Causality error: This expression has causality type
’c -> ’d * ’e * ’f -> ’g, whereas it should be less than
’h -> ’i * ’j * ’k -> ’l
Here is an example of a cycle:
k < f; f < g; g < l; l < k

Remove administrative relations. Then, f < g and l < k are contradictory
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A language kernel

Definition of functions; variables, constant, application, fix-point, tuples
and access functions.

d ::= let f x = e | d ; d

e ::= x | v | let rec x = e in e
| (e, e) | fst(e) | snd(e)
| e(e) | e fby e

v stand for values.

Typing constraints so that let rec x = e in e ′ is limited such that the type
of e is bounded: it has no function type in it.
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Expressing Dependences/Causality with a type

Since all stream operations are length preserving, express instantaneous
dependences only.

The dependence relation is a partial order.

Represent the instantaneous dependences of an expression by a type.

bt ::= α
t ::= bt | t × t | t → t
σ ::= ∀α1, ..., αn : C .t | t

C ::= {αi < αj}i ,j∈I

α1, ..., αn, ... are tags (a tag is a “time stamp”).

C must define a partial order (acyclic graph) between those tags.
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Initial conditions

(+) : ∀α.α× α → α

if . then . else . : ∀α.α× α× α → α

pre · : ∀α1, α2 : {α2 < α1}.α1 → α2

· fby · : ∀α1, α2 : {α1 < α2}.α1 × α2 → α1
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The typing predicate: C ,H ⊢ e : t, where:

H = [x1 : σ1, ..., xn : σn] and Acyclic(C ) as an implicit side condition.

(fundef)
C ,H[x : t1] ⊢ e : t2

H ⊢ let f x = e : H[f : Gen(C )(t1 → t2)]

(app)
C ,H ⊢ f : t1 → t2 C ,H ⊢ e : t1

C ,H ⊢ f e : t2

(const)
C ,H ⊢ v : bt

(tuple)
C ,H ⊢ e1 : t1 C ,H ⊢ e2 : t2

C ,H ⊢ (e1, e2) : t1 × t2
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(var)
Cx , t ∈ Inst(σ)

C + Cx ,H[x : σ] ⊢ x : t

(sub)
C ,H ⊢ e : t1 C |= t1 < t2

C ,H ⊢ e : t2

(rec)
C ,H[x : t] ⊢ e : te C |= te < t C ,H[x : te ] ⊢ e ′ : t ′

C ,H ⊢ let rec x = e in e ′ : t ′

Generalisation

Gen(C )(t) = ∀α1, ..., αn : C .t whereVars(t) = {α1, ..., αn}
provided Acyclic(C )

Instanciation

C [α⃗′/α⃗], t[α⃗′/α⃗] ∈ Inst(∀α⃗ : C .t) provided Acyclic(C [α⃗′/α⃗])
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The dependence/precedence order

The relation is strict.

(tuple)
C |= t1 < t ′1 C |= t2 < t ′2

C |= t1 × t2 < t ′1 × t ′2

(fun)
C |= t2 < t ′2 C |= t ′1 < t1

C |= t1 → t2 < t ′1 → t ′2

(trivial)
C [α1 < α2] |= α1 < α2

(trans)
C |= t1 < t2 C |= t2 < t3

C |= t1 < t3

We write C |= H < H ′ iff ∀x .C |= H(x) < H ′(x)
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Equations
Extend the language of equations.

e ::= let rec E in e | ...
E ::= E and E | if e then E1 else E2

| x = e | local x inE

(eq)
C ,H ⊢ e : t

C ,H ⊢ x = e : [t/x ]

(and)
C ,H ⊢ E1 : H1 C ,H ⊢ E2 : H2

C ,H ⊢ E1 and E2 : H1 + H2

(rec)
C ,H ⊢ E : H ′ C |= H ′ < H C ,H + H ′ ⊢ e : t

C ,H ⊢ let rec E in e : t

(local)
C ,H + [t/x ] ⊢ E : H ′ + [t ′/x ] C |= t ′ < t

C ,H ⊢ local x inE : H ′
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By-case definition

H1 + H2 is the union of H1 and H2. Domains must not intersect.
H1#H2 merges two environments. (H1.H2)(x) = t if H1(x) = H2(x) = t
or H1(x) = t and x ̸∈ Dom(H2) or H2(x) = t and x ̸∈ Dom(H1).

(if)
C ,H ⊢ e : α C ,H ⊢ E1 : H1 C ,H ⊢ E2 : H2

C ,H ⊢ if e then E1 else E2 : H1.H2

but it rejects if c then y = f (x) else x = g(y)

(if)
C ,H ⊢ e : α C ,H,H1,H

′′
2 ⊢ E1 : H ′

1 C ,H,H2,H
′′
1 ⊢ E2 : H ′

2

C ,H ⊢ if e then E1 else E2 : H ′
1.H

′
2

where H ′
1 < H1 < H ′′

1 , H ′
2 < H2 < H ′′

2
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Simplification of constraints
Sub-typing constraints have to be simplified.

The type system for causality is similar to a type system with intersection
and union types.
• t1 < t ∧ t2 < t corresponds to t1 ∪ t2 < t;
• t < t1 ∧ t < t2 corresponds to t < t1 ∩ t2.

The current system do not have relations of the form α < t or t < α,
where t is not a variable.

Causality is done after typing. It uses the type structure to construct
causality skeleton types.

Yet, a type scheme ∀α1, α2, α3 : {α1, α2 < α3}.α1 × α2 → α3 is
equivalent to ∀α.α× α → α.

Type simplification for systems with intersection/union types has been
studied a lot, in particular by Aiken & Wimmers, Pottier, Smith &
Trifonov, Castagna et al.
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Input/Output relation
We apply the simplification algorithm that uses the Input/output relation
of Pouzet & Raymond [10].

InOut(p)(t) computes the set of inputs and outputs. p ∈ {−,+} is a
polarity. neg(−) = + and neg(+) = −.

InOut(+)(α) = ∅, {α}

InOut(−)(α) = {α}, ∅

InOut(p)(t1 → t2) = let i1, o1 = InOut(neg(p))(t1) in
let i2, o2 = InOut(p)(t2) in
i1 ∪ i2, o1 ∪ o2

InOut(p)(t1 × ...× tn) = let (ik , ok = InOut(p)(tk))k∈[1..n] in
∪k∈[1..n]ik ,∪k∈[1..n]ok
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Given a set of variables V and a set of constraints C between them.
I ⊆ V the set of inputs; O ⊆ V the set of outputs. I and O not necessarily
disjoint.
• Out(a) = {b ∈ O | C ⊢ a ≤ b}
• In(a) = {b ∈ I | C ⊢ b ≤ a}
• IO(a) = {b ∈ I | Out(a) ⊆ Out(b)}

For every input and output variable, computes its IO set.

Associate a unique key (a fresh variable) to every IO set.

Replace the relation < by the relation between IO sets, that is:
if IO(a) ⊆ IO(b), with a′ the key of IO(a) and b′ the key for IO(b),
then a′ < b′.

There is a canonical form (i.e., unicity) that minimises the number of
variables.
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Extra simplification

Some dependences can be removed.

Only keep dependences of the form αp < βq where the polarities p is − or
+− and q is + or +−.

It gives extremely short type signature in practice.

Open question: does it simplify more than existing simplification methods
for type systems with sub-typing constraints?
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Conclusion

• The type system is used since 2017 in the Zelus compiler.

• Try it! https://github.com/INRIA/zelus
• The compiler of Scade 6 also implements a type-based causality analysis.

• Boths take into account by-case definitions of streams.
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Extra notes (to be continued).
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The curse of non linear functions
let node fix(f)(x) = o where rec o = run f (x, o)
let node twice(f)(x) = o where rec o = run f (run f (x))
let node twice(f)(x) = o2 where

rec o1 = run f (x) and o2 = run f (o1)
val twice : {’a < ’b}. (’b -> ’a) -> ’b -> ’a

The type of twice says that the output of f must not depend on its input
whereas it does not appear in any recursive stream equation!
As a consequence, we cannot write:

let node f(x) = x + 1
let node main(x) = twice(f)(x)

>let node main(x) = twice(f)(x)
> ^^^
Causality error: This expression has causality type
’b -> ’c, whereas it should be less than ’d -> ’e
Here is an example of a cycle:
d < b; b < c; c < e; e < d
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Atomic functions

This is a consequence of the contravariance rule and the fact that the
sub-typing rule uses a strict order.

Would it be better using union/intersection types? a strict and non strict
order?

One way to impose the strongest constraints on an input function is to
consider it to be atomic, that is, as if all of its outputs would depend on all
of its inputs.

let node twice_atomic(f)(x) = o where
rec o = run (atomic f) (run (atomic f) (x))

let node twice_atomic_f(x) = twice_atomic(f)(x)

val twice_atomic : {’a < ’b}. (’a -> ’b) -> ’b -> ’b
val twice_atomic_f : {}. ’a -> ’a
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The typing rule for atomic values

skeleton(C )(α)(α′) = α,C + [α < α′]

skeleton(C )(α)(t1 → t2) = let t ′1,C1 = skeleton(C )(α′)(t1) in
let t ′2,C2 = skeleton(C1)(α)(t2) in
t ′1 → t ′2,C2 + [α′ < α]

skeleton(C )(α)(t1 × t2) = let t1,C1 = skeleton(C )(α)(t1) in
let t2,C2 = skeleton(C2)(α)(t2) in
t ′1 × t ′2,C2

(atomic)
t ′,C ′ = skeleton(∅)(α)(t)

C + C ′,H[f : t] ⊢ atomic f : t ′
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