
BPMN Conformance in Open Source Engines

Matthias Geiger, Simon Harrer, Jörg Lenhard, Mathias Casar, Andreas Vorndran and Guido Wirtz
Distributed Systems Group

University of Bamberg
Bamberg, Germany

{matthias.geiger, simon.harrer, joerg.lenhard, guido.wirtz}@uni-bamberg.de

Abstract—Service-oriented systems are increasingly imple-
mented in a process-based fashion. Multiple languages for
building process-based systems are available today, but the
Business Process Model and Notation (BPMN) is becoming
ubiquitous. With BPMN 2.0 released in 2011, execution seman-
tics were introduced, supporting the definition of executable
processes. Nowadays, more and more process engines directly
support the execution of BPMN processes. However, the BPMN
specification is lengthy and complex. As there are no official
tests and no certification authority, it is very likely that engines
a) implement only a subset of the language features and b)
implement language features differently. In other words, we
suspect that engines do not conform to the standard, despite the
fact that they claim support for it. This prohibits the porting
of processes between different BPMN vendors, which is an
acclaimed goal of the language. In this paper, we investigate the
standard conformance of open source BPMN engines to provide
a clear picture of the current state of the implementation of
BPMN. We develop a testing approach that allows us to build
fully BPMN-compliant tests and automatically execute these
tests on different engines. The results demonstrate that state-
of-the-art BPMN engines only support a subset of the language.
Moreover, they indicate that porting BPMN processes is only
feasible when using basic language constructs.

Keywords-BPMN, engine, conformance testing

I. INTRODUCTION

Process-aware information systems [1] are facing increas-
ing adoption in practice. This is particularly relevant for
service-oriented systems where processes are frequently used
for building service orchestrations [2]. Such an orchestration
aligns calls to existing services in a process-based manner
and thereby provides a value-added service. To foster an
optimization of a process or orchestration, it is considered as
a best practice to apply the Business Process Management
(BPM) lifecycle [3]. This lifecycle increases the value of the
services even further by feeding back insights gained during
process enactment into the next version of the process.

Many languages for implementing process-based service-
oriented systems exist today, but currently the BPMN
specification [4] is the most promising. BPMN has been
accepted as an ISO standard in revision 2.0.2. It provides a
notation for modeling processes of various types, but also for
implementing executable processes that can be used for the
task of service orchestration. BPMN is even expected to super-
sede the Business Process Execution Language (BPEL) [5],

when it comes to the construction of service orchestrations.
More and more vendors are currently implementing the
specification, resulting in a variety of freely available or
commercial modeling tools and engines1. BPMN engines
are able to consume and execute processes provided in the
correct format. Since BPMN standardizes the format and
semantics of processes, their execution behavior should not
differ on different engines. However, this only works if all
engines fully implement BPMN in the same manner with
respect to semantics, which is an unrealistic assumption. If
engines do not fully conform to the standard, i.e., if they
skip certain parts of it or implement some features in a
limited or differing way, the portability of processes can no
longer be taken for granted. In this case, strictly speaking, an
engine only supports a dialect of BPMN. A lack of standard
conformance in the implementations removes the benefits of
the standard and defeats the purpose of the standardization
in the first place. Since there is no certification authority that
checks standard conformance of BPMN implementations,
vendors can easily state that they support the standard.

In similar work, we investigated the standard conformance
of BPEL engines [6], [7]. Here, we build upon this work
and extend it for benchmarking the standard conformance
of BPMN engines. We develop a testing approach for this
task and, thereby, extract a testing methodology that is
independent of a concrete process language. We implement
the approach with a testing tool and provide a rich test
suite of standard conformant BPMN processes. We use this
approach and test suite to assess several freely available
BPMN engines. The results show that multiple BPMN
features are rarely implemented and, thus, should be treated
with care in practice.

The next section discusses related work and delineates
this paper from similar studies. Thereafter, we detail our
testing approach and methodology in Section III, including
a description of the domain model, the testing workflow and
testing suite, and the engines under test. Section IV presents
the results of the test execution. We interpret the results and
discuss threats to validity in Section V. Finally, Section VI
ends the paper with a summary and an outlook on future
work.

1Currently, more than 70 implementers are listed at http://www.bpmn.org/.

II. RELATED WORK

Related work separates in three areas. These are pro-
cess languages for implementing executable process-based
systems in Section II-A, conformance benchmarking and
testing of process engines in general in Section II-B, and,
the evaluation of the conformance of BPMN processes and
environments in particular in Section II-C.

A. Languages for Building Executable Processes

A large variety of process languages is available today.
For instance, [8] discusses more than 19 business process
modeling languages, which have different areas of application.
Especially for executable languages, standard conformance is
of paramount importance for avoiding vendor lock-in. For this
reason, we do not consider process languages for which the
sole implementation is the standard, e.g., the Windows Work-
flow Foundation2 (WF) 4.5 or the jBPM Process Definition
Language3 (JPDL). The three most relevant standardized ones
are the OASIS standard BPEL 2.0 [5], the WfMC standard
XML Process Definition Language (XPDL) 2.2 [9], and the
OMG/ISO standard BPMN 2.0 [4]. BPEL is primarily aimed
at implementing Web Service-based service orchestrations.
It only has an XML format and lacks a graphical one. As
opposed to this, BPMN and XPDL do have a graphical
representation as part of their specification, as well as an XML
serialization format. Especially BPMN is targeted towards
business users, enabling the modeling of processes on various
levels with different technical detail. Whereas BPEL 2.0
uses a block-oriented approach for control-flow definition,
both XPDL and BPMN are graph-oriented [10]. These three
languages are often used in combination. BPMN defines
transformation rules to derive a BPEL representation [11,
Chapter 14], and XPDL acts as an interchange format that
is compatible with BPMN and BPEL. As BPEL has no
graphical representation, some tools, e.g., the IDE bundled
with OpenESB, make use of BPMN shapes to visualize BPEL
processes.

Since BPMN 2.0, the “BPMN execution semantics have
been fully formalized” [4, p. 10] and are provided in
[4, Chapter 13]. An engine “claiming BPMN Execution
Conformance [...] must fully support and interpret the
operational semantics” [4, p. 10]. However, several studies
report that building executable and, at the same time, standard-
conformant processes is hardly feasible due to ambiguities
and underspecification, e.g., [12], [13]. Gutschier et al. [12]
state that, for this reason, BPMN cannot be used as a service
orchestration language. They circumvent the problems in
the specification through wrappers, but admit that this leads
to the dependence on specific execution engines. Our work
is similar to [12] in that we analyze how certain engines

2The official documentation is available at http://msdn.microsoft.com/
en-us/library/dd489441(v=vs.110).aspx.

3The official documentation is available at http://docs.jboss.com/jbpm/v3/
userguide/jpdl.html.

implement specific features of BPMN. However, we do not
address the executability of the standard per se or try to fix
problems in the specification, but analyze which features are
implemented in current engines in a standard-conformant
way. Whereas [12] focuses on ServiceTasks only, we evaluate
a whole range of Activities, Gateways, and Events.

B. Conformance Benchmarking and Testing of Process
Engines

This work is an extension of previous work on the
conformance benchmarking of process engines, albeit for
another language, BPEL [5]. In former work, we implemented
a conformance benchmarking tool for this language, the
BPEL engine test system (betsy) [14] and used it to analyze
the standard conformance of a plethora of BPEL engines [6],
[7], [15] in an isolated fashion [16]. The difference between
this and former work is the focus on a new language,
BPMN [4]. Hence, we heavily adapted the testing tool to
support multiple process languages instead of a single one,
implemented a new test suite for BPMN, and added support
for three BPMN engines.

The benchmarking of process engines is not limited to
standard conformance, of course. A central area of interest
is performance benchmarking for comparing competing
systems [17] and to verify that nonfunctional performance
requirements are met [18]. An overview of the available
approaches targeting BPEL engines is given in [19]. To
conduct performance benchmarking, choosing the right
workload [20], as well as the setup of the test bed is critical.
In [21], a workload model for benchmarking BPEL engines
is proposed, whereas [22], [23] propose test beds for BPEL
engines. Here, we benchmark BPMN engines, and focus
solely on standard conformance where our workload is simply
a set of processes with predefined inputs, and the test bed is
set up by betsy.

C. Conformance Checking of BPMN

The conformance checking of BPMN processes manifests
itself in various aspects in related work: Part of this work
concentrates on the verification of the standard-compliance
of concrete models. This may refer to whether there are
issues regarding the execution semantics (e.g., [24], [25]) or
whether the serialization of a model is correct and compliant
regarding the standardized format. Examples for the latter
category are [26], [27]. These studies show that a schema
validation of BPMN models with the XSD-based serialization
format is not sufficient, because the standard defines many
constraints which require more sophisticated checks.

Also the standard conformance of modeling tools is of par-
ticular interest [26]. The Object Management Group (OMG)
currently puts effort in the investigation of interoperability
issues of BPMN models and has founded the BPMN Model

TestwSuite Engine Process TestwCasecommon TestwStep
Testw

Assertion
1..*1 1 1..* 1..* 1..* 0..*1 1 1

bpmn

jBPM SequenceFlow.bpmn k1 no input "task1"instances

Engine Process TestwCase TestwStep
Testw

Assertion

Figure 1. Betsy’s Domain Model Applied on a BPMN Test

Interchange Working Group4 (BPMN MIWG). The focus
of this group is different from the work at hand, as BPMN
MIWG is tackling interchange of models between modeling
tools and not checking the standard conformance of BPMN
engines.

III. APPROACH AND TESTING METHODOLOGY

The intention of our approach is to test the conformance
of a set of BPMN engines to the features defined in the
specification in an isolated and reproducible fashion. On the
one hand, this requires the construction of an automated test
workflow that allows for the isolated testing of language
features on different engines. On the other hand, a set of
feature tests is needed.

To implement the testing workflow, we extended our
existing conformance benchmarking tool for BPEL, the betsy
tool (cf. Section II-B)5. We extracted common core parts
from betsy which are used for the testing of both, BPEL and
BPMN engines. This allows us to reuse a lot of existing code
and procedures while keeping the extension for BPMN small
and concise. Moreover, betsy can now easily be extended for
the testing of even more process languages. For implementing
a suite of feature tests, we extended the domain model of
betsy and provided a set of 70 standard-conformant BPMN
processes.

The following subsections, describe the domain model,
testing workflow, and conformance test suite. Furthermore,
we briefly introduce and classify the engines under test in
Section III-D.

A. Testing Domain Model

The domain model for conformance tests, shown in Fig. 1,
is identical to the one used in betsy [6, p. 3]. Briefly said,
a conformance benchmark consists of a test suite, which
comprises the set of engines and processes to be tested. For
each combination of engine and process, at least one test case
is executed. A test case consists of a number of test steps,
which corresponds to zero or more test assertions. Only if
all test assertions can be validated after a test execution,
the test case is recorded as successful, i.e., the test verifies
the conformance of an engine to a feature of BPMN. An

4More information is available at http://www.omgwiki.org/bpmn-miwg/
doku.php.

5The project is freely available at GitHub: https://github.com/uniba-dsg/
betsy; A more thorough description of betsy is given in [14].

example of an instantiation of the domain model is shown in
the last row of Fig. 1. This instantiation represents a single
test case in which betsy verifies whether the SequenceFlow
construct is supported by the jBPM engine. This involves a
single test case that has no input and ensures that an expected
trace, in this case the token task1, shows up in the process
log. Thereby, the test verifies that each SequenceFlow in the
process is followed as expected.

start

create log file write trace to
log

end

Figure 2. Process Test Stub

The SequenceFlow test process, depicted in Fig. 2, is of
central importance to our approach. It serves as the test
stub which we extend for every other conformance test for
BPMN. The language constructs used in this test work on
every BPMN engine we benchmark in this paper. Hence, there
is no influence of this base test on other tests. The constructs
used are, a none StartEvent, SequenceFlows, ScriptTasks,
and a none EndEvent. Said Start- and EndEvents are the
simplest events in BPMN that involve no specific kind of
trigger. ScriptTasks are needed for writing the traces of the
process execution to a log file. The correctness of these
traces in the log file is verified after each test. The usage
of execution traces is common for correctness checking of
process execution [28], but is a significant difference to the
conformance testing of BPEL engines [6]. For BPEL, we
actively communicate with the process through messages.
This mechanism was not possible for BPMN, since there
is no standard-conformant and engine-independent way of
specifying message exchanges that works on all engines
under test. This problem is also discussed in [12]. For this
reason, we had to draw on the evaluation of execution traces.
In the process tests, the ScriptTasks are initially empty. Upon
executing a test for a specific engine, we inject a script into
the body of the script task that works on the engine. This
script then creates a log file or writes an execution trace.
The engine specific adaption of the script body is needed, as
the specification does not require BPMN engines to support
a specific scripting language [4, Section 10.3.3]. Using this

create
log file

write
task1
to log

write
task3
to log

write
task2
to log

input contains "a"

input contains "b"

Figure 3. Example: BPMN process for ExclusiveGateway

approach does not violate the standard conformance of the
process test as both, the empty script and an executable script
body, are standard compliant.

Further tests are implemented by extending the test stub in
Fig. 2 with specific BPMN constructs. For instance, to test
the language construct ExclusiveGateway, we require several
feature tests. One of them is the plain ExclusiveGateway
without any additional configuration. To test this feature,
we add this gateway along with additional SequenceFlows
and ScriptTasks to check all possible execution traces of the
process, as shown in Fig. 3. The four test cases that verify
the correctness of this feature are given in Table I, covering
every possible branch and condition.

Many BPMN constructs have a variety of configuration
options that cannot be checked in a single test case or
process. The ExclusiveGateway, for example, may include a
default SequenceFlow and a gatewayDirection. We build a
different process for each setting of configuration options to
exhaustively test every feature. Each process then corresponds
to a file in the serialization format defined in [4]. Hence,
an engine must be able to consume this format, otherwise a
conformance benchmark is not possible.

B. Test Workflow

The purpose of the test workflow is to allow for isolated
testing and reproducible results. Since the engines are
complex middleware products, this is relatively complicated.
A parallel test execution is not possible, because engines
consume system resources, such as ports, and might conflict
with each other when tested in parallel. Moreover, as previous
deployments and test runs might impact the results of
subsequent test runs, an engine is installed anew for every
test case execution. The test workflow is adapted from [6] and
shown in Fig. 4. After some preparation, e.g., the creation
of folders and the download of required files, each BPMN
feature is tested in isolation, followed by the generation
of HTML and CSV reports based on the results. At the
beginning of a feature test, the standard conformant BPMN
process is enriched with vendor-specific information, such
as required namespace declarations and scripts. Moreover, a
deployment package is created along with all additional files
required by an engine. Next, a Java class containing a unit test
is generated. This unit test is used to verify the correctness
of the process execution trace. Thereafter, the engine is
downloaded, installed, started, and the deployment package

Table I
EXAMPLE: TEST CASES FOR THE FEATURE ExclusiveGateway

input expected log trace

1 a task1,task3
2 b task2,task3
3 ab task1,task3
4 c runtime error

is deployed using an engine-specific deployment method. In
case a deployment is not successful, a corresponding trace
is written into the process log. The testing itself involves
several steps: a) starting the process via a REST API call and
passing an optional input parameter, b) optionally waiting
for a specified amount of time, c) searching the engine log
file for exceptions as well as errors and marking any findings
in the process log trace, and d) compiling and executing the
generated unit test to verify the process log trace. A correct
log trace corresponds to the correct implementation of the
BPMN feature. Finally, the engine under test is stopped.

C. Conformance Testing Suite

The remaining part of our approach is the test suite of
conformance tests. If processes are executed automatically
on process engines it is crucial that an engine a) supports
all language features in general and b) sticks to the defined
execution semantics. These two aspects determine which
features should be tested and how the concrete tests have to
be designed. In this work, we stick to the most commonly
used BPMN language features for processes. In total we
define a set of 70 feature tests for 27 language constructs
which can be divided in five categories:

Basics (BA): The basis for all tests are connections
between BPMN elements through SequenceFlows. This
test category focuses mainly on different configurations
of SequenceFlows, for instance conditional and default
configurations. Further aspects in this category are the usage
of Participants and Lanes. We created 6 tests covering these
basic aspects.

Activities (ACT): The standard introduces different types
of Activities [4, Chapter 10.3]. Activities can be Tasks,
different kinds of SubProcesses, and CallActivitities. BPMN
also provides the ability to define special execution behavior
of Activities, like looping or multiple instantiation. We test
different types of Activities and their execution behavior in
12 tests.

Gateways (GW): The third category contains the con-
structs that control the routing behavior of a process, i.e.,
gateways. BPMN defines different types of gateways and we
test Exclusive, Inclusive, Parallel, Complex, and EventBased
gateways [4, Chapter 10.6] and their combination in 13 tests.

Events (EV): BPMN defines 3 major types of Events [4,
Chapter 10.5]. These are Start events, Intermediate events
and End events. Each event type can be enhanced by none,
one, or multiple EventDefinitions to determine what kind of

per engine and per process

Generate
BPMN

Generate
Test

Install
Engine

Start
Engine

Deploy
BPMN

Execute
Test

Generate
Reports

Stop
Engine

Prepare
Folders

Figure 4. Test Workflow, taken from [6, p. 4]

event is triggered or caught. We test Cancel, Compensation,
Conditional, Error, Escalation, Link, Signal, Terminate and
Timer EventDefinitions in the form of Start, Intermediate and
End events, depending on the allowed combinations (see [4,
p. 259–260]), resulting in 36 tests.

Errors (ERR): The error category does not correspond to
a certain set of BPMN constructs, but bundles several faulty
processes which should be detected by an engine according
to [4]. It comprises three tests of invalid condition usages and
invalid branching/merging combinations of gateways which
result in blocked processes.

D. Engines Under Test

The market of process engines supporting the execution
of BPMN is rather fragmented. There are various vendors
claiming to support BPMN 2.0. To be used in this study,
two main requirements have to be fulfilled: First, we want
to test open source engines. So the vendors have to provide
a version of their tool licensed under one of the major
open source licenses. If there is both an open source and a
commercial version available we use the freely available open
source version. Second, we check the standard conformance
regarding the most recent version of BPMN [4]. This is only
possible if the engines support BPMN natively, i.e., they are
able to import, deploy and execute processes defined in the
standardized serialization format. This excludes some engines
which use BPMN for visualization purposes but require a
proprietary serialization format. From the remaining set of
engines, we choose three engines, namely jBPM, Activiti and
camunda BPM. The three engines are briefly described in
the following:

jBPM: Originally, jBPM6 was not developed as a distin-
guished BPMN engine but as a more general BPM platform.
Based on a Process Virtual Machine (PVM), it supports
several process languages (e.g., jPDL and BPEL [5]). Since
version 4.3, jBPM also supports the execution of processes
in native BPMN. The version under test is 6.0.0-Final.

Activiti: Activiti is an open source BPM platform7. In
2010, developers already working on jBPM decided to build
a new BPM engine from scratch exclusively designed for
BPMN execution and this engine is the result. Activiti
is supported by various companies, however most core
developers are associated with Alfresco who provides an

6The project website is located at http://www.jbpm.org/.
7The project homepage can be found at http://www.activiti.org/. An

introduction to the usage of Activiti is given in [29].

enterprise edition of Activiti. At the time of writing the most
recent version of Activiti was 5.16.3 which is used here.

camunda BPM: camunda BPM8 is a fork of Activiti
which is now developed and distributed by the German BPM
software vendor camunda. Next to the open source version of
camunda BPM, also an enterprise edition is available. In our
work we use the most recent open source version 7.1.0-Final.

Table II
FEATURES OF ENGINES UNDER TEST

jBPM Activiti camunda BPM

General
Version 6.0.0-Final 5.16.3 7.1.0-Final
License Apache Apache Apache
Date of Release 11/2013 09/2014 03/2014
Developed in Java Java Java
Installation
Requirements Ant - Maven
Java Version Java 7 Java 8 Java 7
Container JBoss AS 7.1.1 Tomcat 7.0.53 Tomcat 7.0.50
Deployment
Method Used CLI tool REST API container
Package Format jar bpmn war
Files in Package 4 1 4
Vendor Specifics
Scripting Engine Java Groovy Groovy
Process Variables explicit implicit implicit

Table II gives an overview on all tested engines. All are
developed in Java, are published under the Apache open
source license, and were released at most twelve months
ago. Activiti is the only one that can already be run on
Java 8. Both camunda BPM and jBPM do run on at most
Java 7. What is more, Activiti has no installation requirements,
whereas jBPM requires the availability of the build tool
Apache Ant and camunda BPM requires Apache Maven.
In our setup Activiti and camunda BPM are executed in a
Tomcat container, and jBPM in the JBoss application server.
Interestingly, every engine requires a different package format
for a BPMN process. For jBPM and camunda BPM, this is a
jar or war archive with 4 files, respectively, while for Activiti
a plain .bpmn file is sufficient. As a consequence, we use a
different deployment method for each engine. For camunda
BPM, the war file is deployed on Tomcat and not directly
on the engine itself. In contrast, for Activiti, the BPMN file
is deployed via a REST API and, for jBPM, the jar package
is deployed via a command line interface (CLI) call to a
jBPM deployment script. As mentioned in Section III-B,
we had to take vendor-specific characteristics into account,
to generate a BPMN file that is executable on a specific

8The website is available at http://www.camunda.org/.

engine. Activiti and camunda BPM use Groovy, and jBPM
Java for executing script tasks and evaluating conditions
and conditionExpressions. Another aspect is whether process
variables have to be modeled explicitly in the process or
are implicitly created on demand. jBPM uses the explicit
approach, and Activiti as well as camunda BPM use the
implicit one.

IV. RESULTS

With the combination of the testing approach and confor-
mance test suite described in the previous section, we are
able to run a fully automated and reproducible benchmark of
the standard conformance of the three BPMN engines. We
executed the benchmark multiple times on a single desktop
computer running a Jenkins build server on Windows 7
Professional SP1 with an Intel Core i7-2600 processor, 16 GB
RAM, and a 1TB HDD. On this machine, each run of
our experiment took approx. 7 hours, resulting in identical
benchmark data. Table III shows the results9 of such a test run.
Each row lists the number of supported features of a language
construct for a specific engine. The language constructs are
grouped according to their category. The column features
indicates the total number of features tested per construct,
whereas the last row computes the sum of each column.

A feature is supported when all the associated test cases
are executed correctly, and unsupported when all the test
cases failed. In our result set, the engines either support a
feature, or do not support it. The case in which only some
but not all test cases are executed successfully did not arise.

A single language construct is fully supported if all as-
signed features are supported. If all features are unsupported,
the construct is unsupported as well. In case some, but not all,
features for a language construct are supported, the language
construct is partially supported. In Table III, no support
is indicated with the number zero, whereas full support is
achieved when the number of supported features equals the
number of total features in the middle column. The remaining
constructs are partially supported.

Whereas Table III presents the raw data, Fig. 5 shows
aggregated values grouped by language construct category
for each engine. This figure shows that all three engines are
able to handle all erroneous tests (ERR). Also, the support
for the basics (BA) is high with at least 75% (three out
of four) of the language constructs being fully supported.
The only limitation here is the usage of conditional Se-
quenceFlows. The engine jBPM does not support conditional
SequenceFlows originating from Tasks at all. Activiti and
camunda BPM do not implement a special case described in
BPMN specification [4, p. 427] correctly. In the following,
we describe the results specifically for each engine under
test, focusing on the activities (ACT), events (EV) and
gateways (GW).

9The data set which is the basis for this and all following figures is avail-
able at https://github.com/uniba-dsg/sose2015-bpmn-conformance-results.

A. Conformance of Activiti

Activiti passes 56% (39 out of 70) of the feature tests.
This is the lowest amount of passed tests of the three engines.
Its main strengths lie in the “gateways” and its weaknesses
in the “events” category.

Activities (ACT): Regarding the tested activities, only
SubProcesses and Transactions are supported fully by Ac-
tiviti. Calling GlobalTasks or using CallActivities is not
possible. Furthermore, looping of tasks and the creation
of multiple instances using the MultiInstance attributes is
only supported partially. Whereas MultiInstance behavior
is actually supported in a few test cases, the LoopTask is
basically unsupported as no loop iteration is implemented.
However, in a special case where the contents of the loop
have to be executed only once, the behavior of the LoopTask
is implemented correctly.

Events (EV): The category of events is least supported.
Only about 36% of all event tests pass and only three out
of nine event types are fully supported (Cancel, Error and
Terminate events). Processes using Conditional, Escalation
and Link events either cannot be deployed or the event
definitions are ignored by Activiti, resulting in incorrect
execution traces. Compensation is only supported if it is
triggered by a Cancel event or an intermediate Compensation
event, which is the case in two out of six tests. The usage
of signals causes problems if they are used as start or end
events in (Event)SubProcesses. Furthermore, a SubProcess
is not interrupted correctly if a boundary event is used. As a
result only two out of six of the Signal tests pass on Activiti.
Finally, Activiti is not able to handle Timer start events
defined for an EventSubProcess. These tests are rejected
during deployment.

Gateways (GW): Activiti clearly has its strength in
this category, where nearly all tested gateway types and
their combinations are supported. Only the single type
ComplexGateway is not supported.

B. Conformance of camunda BPM

The engine camunda BPM passes 63% (44 out of 70)
feature tests, the highest amount of the three engines. The
results of camunda BPM are largely identical to the results
of Activiti, both in the number of passed and failed tests.
The only exception is the “events” category, as camunda
BPM supports more event types. Therefore, we discuss only
the results for “events” omitting a repetition of the results
of the other categories.

Events (EV): Cancel, Error, Link, Terminate and Timer
events are fully supported. This stands in contrast to Activiti,
which provides no support for Link events, and only partial
support for Timer events. Analogous to Activiti, only interme-
diate Compensation and Cancel events can be used to trigger
the Compensation (two out of six tests). Signal events are
almost fully supported, but the usage as an interrupting start
event for an EventSubProcess and as an interrupting boundary

Table III
RESULTS: OVERVIEW ON TEST RESULTS PER FEATURE FOR ALL ENGINES

Category Construct Features Activiti camunda BPM jBPM

basics Lanes 1 1 1 1
Participant 1 1 1 1

SequenceFlow 1 1 1 1
SequenceFlow Conditional 3 2 2 0

activities CallActivity 2 0 0 0
LoopTask 3 1 1 1

MultiInstanceTask 5 3 3 0
SubProcess 1 1 1 1
Transaction 1 1 1 1

events Cancel 1 1 1 0
Compensation 6 2 2 5

Conditional 5 0 0 0
Error 4 4 4 4

Escalation 7 0 0 6
Link 1 0 1 1

Signal 6 2 4 5
Terminate 1 1 1 1

Timer 5 3 5 3
gateways Complex 1 0 0 0

EventBased 2 2 2 2
Exclusive 3 3 3 2
Inclusive 2 2 2 1

MixedGatewayCombinations 4 4 4 4
Parallel 1 1 1 1

errors InvalidGatewayCombinations 2 2 2 2
ParallelGateway Conditions 1 1 1 1

Σ 70 39 44 44

2

3

2

3

5

15

2

3

2

5

5

17

2

3

2

3

3 13

2

1

3

6

2

1

2

5

1
4

2
7

1
3

1 5 1 2 1 4

2

1 2 1
6

ACT BA ERR EV GW Σ ACT BA ERR EV GW Σ ACT BA ERR EV GW Σ

Activiti camundapBPM jBPM

FullpSupport PartialpSupport NopSupport

Figure 5. Number of constructs with full, partial and no support grouped by category and engine.

event fails due to runtime exceptions (four successful tests
out of six). Thus, camunda BPM passes two tests more than
Activiti for this event type. Conditional and Escalation events
are not supported at all which is indicated by meaningful
log messages, stating that the engine does not support the
event definition.

C. Conformance of jBPM

Although jBPM supports the same amount of feature tests
as camunda BPM (44 out of 70), it does not support the
exact same test cases. As a result, its strengths lie in the

support for the “gateway” category, and its weaknesses in
the support for the “activities” category.

Activities (ACT): Apart from the default usage of “activ-
ities” (SubProcess and Transaction), the support for more
advanced configuration is limited in jBPM. It passes only
three out of twelve tests. Multiple instances and CallActivities
are not supported at all. Looping behavior is partially
supported, although in a severely limited fashion where the
loop is executed only once, similar to Activiti.

Events (EV): The results for the event tests are ambivalent.
Although jBPM provides basic support for most of the tested

event definitions (69% of all feature tests pass for jBPM) only
Error, Link and Terminate events are fully supported. Both
Conditional and Cancel events are completely unsupported.
The missing support for canceling transactions hampers full
Compensation support of jBPM: All Compensation tests
pass, except compensation triggered by a canceled transaction.
Moreover, jBPM is the only engine under test which supports
Escalation events at least partially with six out of seven test
cases. In addition, it also has the highest number of successful
tests cases for Signal events with five out of six. However,
jBPM does not pass all tests for those two event types, as
the engine does not interrupt SubProcesses properly. Timers
are partially supported by jBPM, as these are not correctly
implemented if used as start events in EventSubProcesses.

Gateways (GW): Similar to the other engines, jBPM is
strong regarding the support of the different gateway types
and their execution semantics. However, ComplexGateways
and gateways using a mixed GatewayDirection (i.e., the
gateway is merging and diverging at the same time) are
not supported. Moreover, the feature of using a default
SequenceFlow is not supported in combination with an
InclusiveGateway.

V. INTERPRETATION AND DISCUSSION

In the following, we interpret the outcomes of the bench-
mark in Sections V-A and V-B, and discuss threats to validity
and limitations of the approach in Section V-C.

The results presented in Section IV can be interpreted
from two different viewpoints: First, the overall conformance
of all BPMN engines in terms of commonly supported
features is analyzed. Second, the implications of this level
of conformance on process portability are discussed.

A. Overall Support for BPMN Features

The accumulated successful feature tests shown in Table III
do not distinguish an obvious winner with regard to supported
language features. Both, camunda BPM and jBPM pass 44 of
70 tests (64%), whereas Activiti passes only 56% of the tests.
Hence, all engines support only a subset of the language
features defined in the BPMN specification [4]. It can be seen
from the tests that a) the engines do reject many processes if
they detect unsupported features, and b) there are tests which
can be deployed but fail nonetheless, as the implementation
of the feature is not correct. As a result, none of the engines
under test can claim to be fully BPMN compliant.

Looking more closely at the data reveals that the results
for Activiti and camunda BPM are roughly equal. This is
not surprising as the source code of camundaBPM is forked
from the Activiti code base. In fact, Activiti supports a subset
of the features supported by camunda BPM.

Although camunda BPM and jBPM have the same overall
score, camunda BPM clearly performs better in terms of
language constructs (see Fig. 5) because 17 out of 27
constructs tested are fully supported by camunda BPM.

No support
(15 features, 21%)

only camunda BPM
(2, 3%)

only jBPM
(11, 16%)

Activiti and
camunda BPM

(9, 13%)

camunda BPM and jBPM
(3, 4%)

Supported by
all engines

(30 features, 43%)
Partial

support
(25 features, 36%)

Figure 6. Support Level By Single Feature Test

jBPM is even outranked by Activiti (15 constructs), as it
only provides full support for 13 language constructs. This
implies that jBPM generally supports more constructs than
the other engines in a basic configuration. However, the
implementation often does not cover all aspects of a specific
language construct. An example already mentioned is the
lack of support when using default SequenceFlows with an
InclusiveGateway. At the same time, it can be stated that if
a language construct is supported by Activiti and camunda
BPM, it is generally supported in a more comprehensive way,
respecting all possible configurations.

The number of constructs that are fully supported by
all engines is rather small when compared to the amount
of constructs that BPMN does define [4]. Apart from
the basis for our tests (unconditional SequenceFlow, none
StartEvent, none EndEvent and ScriptTask) only 8 further
constructs are supported by all engines: SubProcesses, Trans-
actions, Lanes, Participants, ErrorEvents, TerminateEvents,
EventBasedGateways and ParallelGateways. Furthermore, all
engines are capable to execute combinations of different
gateway types and to detect all tested erroneous processes.
Although these numbers are not very promising, all but
one of the eight constructs most frequently used in BPMN
processes are supported [30]. Solely using ExclusiveGateways
may cause problems, as jBPM does not support a mixed
GatewayDirection.

CallActivities, ConditionalEvents, and ComplexGateways
are unsupported by all engines. Moreover, the tests show that
interrupting events often cause problems during execution
and are not supported correctly.

B. Implications on Process Portability

With respect to the portability of processes, Fig. 6 shows
that porting is problematic. Only 30 of the 70 tested features
(i.e., 43%) are supported by all three engines. Hence, only
these features can be considered to be fully portable for the
three engines under test. Those, and only those, features can
be used within a process without causing problems when
porting a process from one engine to another. 25 features

(or 36%) are supported only by a subset of engines. Their
portability depends on the source and the target engine. Out of
the 25 features, two are only supported by camunda BPM and
eleven only by jBPM. These 13 features can be considered as
non-portable, as they are only supported by a single engine,
i.e., the source and target engine must be the same. Nine
features are supported by both Activiti and camunda BPM,
and three by jBPM and camunda BPM. In contrast, Activiti
and jBPM do not have any features in common except the
ones that are fully portable. The remaining 15 features are
not supported at all. Because of this, any process making use
of such a feature is not executable on any of the engines.

The numbers show that the porting of processes from
one engine to another is likely to cause problems. In this
respect, the situation for BPMN is no different from that of
other process languages [31]. Only the porting from Activiti
to camunda BPM is unproblematic, since camunda BPM
supports all 39 features supported by Activiti. In all other
cases there are several features which are supported by the
source but not by the target engine. Porting processes from
jBPM to Activiti is most problematic, as there are only 30
common features, i.e., 14 features working on jBPM are not
executable on Activiti.

This illustrates that feature support and portability are two
sides of the same coin: Using an engine that supports many
language features enables the execution of more diverse and
advanced processes. However, migrating from this engine to
another one is often not possible, as some required features
are not supported by the target engine. This effectively results
in the undesirable condition of a vendor lock-in.

C. Limitations and Threats to Validity

Despite the amount of tested features, several untested
aspects and threats to validity remain which limit the
generalizability of the interpretation.

Currently not all aspects of BPMN are covered. BPMN
provides the ability to define multiple EventDefinitions (either
parallel or not) which is hard to test due the combinatorial
explosion of test cases. Furthermore, we do not deploy more
than one deployment package at a time for reasons of test
isolation. Although, using BPMN it is generally possible to
define more than one process in one .bpmn file. However,
the engines under test do not support this feature. This implies
that is not possible to test some features which require inter-
process communication. In particular, these are signals used
between processes, messages sent from process to process
and CallActivities calling another process deployed before.
Regarding MessageEvents (and Service, Send and Receive
Tasks) the standard requires modeling tools and engines to
support WSDL based interface and operation definitions
[4, pp. 6 and 52]. However, none of the engines under
test is able to actually call or provide Web Services in a
standard compliant manner. Instead, engine-specific means
for message exchange are used. For this reason, we currently

do not test said events and tasks. Further limitations in the
test suite are the omission of advanced data handling aspects
and the handling of erroneous processes.

Moreover, we cannot prove that the test suite and the betsy
tool are free of errors that might influence the benchmark. We
try to minimize the amount of errors in the generated tests by
validating the test processes with respect to schema validity
and standard conformance10. Furthermore, we peer-reviewed
the tests in our group and exposed them to public scrutiny.
Finally, we use unit testing and continuous integration to
improve the quality of the benchmarking tool.

Another threat to the generalizability of our results lies
in the selected engines. Without market data on engine
usage it cannot be proven that the engines under test really
are representative for BPMN execution in practice. We are
confident that the engines are important in the area of open
source BPMN engines, but the results might look different
when analyzing proprietary BPMN engines. For this reason,
we explicitly limit the scope of the paper to open source
BPMN execution.

VI. CONCLUSION AND FUTURE WORK

The purpose of this paper is to investigate the current state
of standard conformance of open source BPMN engines.
By extending prior work [6], [7], we were able to check
BPMN process engines in a fully automatic fashion. We
developed an extensive test suite comprising 70 tests for
the most important BPMN language constructs. Using the
enhanced tool and the test suite we were able to evaluate the
conformance of the three BPMN engines Activiti, camunda
BPM, and jBPM.

Our results show that the engines under test currently
support at most 64% of the tested features. So, more than a
third of the features is either rejected during the deployment
of a process, or implemented in a way that conflicts with
the specification. An analysis regarding process portability
shows that only 43% of the tested features are portable
among all three engines. Even a basic construct such as
ExclusiveGateway is not fully supported by all engines.

The limitations of the approach, as listed in Section V-C,
are, at the same time, promising areas of future work. First
of all, the test suite does not fully cover all aspects of the
specification. Therefore, we plan to extend the test suite by
providing support for the remaining language constructs and
feature combinations. Moreover, we also aim to take more
BPMN engines into account to get a broader picture of the
portability of BPMN processes. Especially a benchmark of
several proprietary engines would be interesting.

10For this task we used a self-developed tool. For more information, see
http://www.uni-bamberg.de/pi/bpmn-constraints.

REFERENCES

[1] M. Dumas, W. M. P. van der Aalst, and A. H. M. ter Hofstede,
Process-Aware Information Systems: Bridging People and
Software Through Process Technology. Wiley, 2005.

[2] C. Peltz, “Web services orchestration and choreography,”
Computer, vol. 36, no. 10, pp. 46–52, October 2003.

[3] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske,
“Business Process Management: A Survey,” in Proceedings of
the International Conference on Business Process Management.
Eindhoven, The Netherlands: Springer Berlin Heidelberg, June
2003, pp. 1–12.

[4] ISO/IEC, ISO/IEC 19510:2013 – Information technology
- Object Management Group Business Process Model and
Notation, November 2013, v2.0.2.

[5] OASIS, Web Services Business Process Execution Language,
April 2007, v2.0.

[6] S. Harrer, J. Lenhard, and G. Wirtz, “BPEL Conformance
in Open Source Engines,” in Proceedings of the 5th IEEE
International Conference on Service-Oriented Computing and
Applications (SOCA’12), Taipei, Taiwan. IEEE, 17–19
December 2012, pp. 237–244.

[7] ——, “Open Source versus Proprietary Software in Service-
Orientation: The Case of BPEL Engines,” in International
Conference on Service Oriented Computing, vol. 8274. Berlin,
Germany: Springer Berlin Heidelberg, 2013, pp. 99–113.

[8] H. Mili, G. Tremblay, G. B. Jaoude, E. Lefebvre, L. Elabed,
and G. E. Boussaidi, “Business Process Modeling Languages:
Sorting Through the Alphabet Soup,” ACM Comput. Surv.,
vol. 43, no. 1, pp. 4:1–4:56, December 2010.

[9] WfMC, XML Process Definition Language, August 2012, v2.2.
[10] O. Kopp, D. Martin, D. Wutke, and F. Leymann, “The Dif-

ference Between Graph-Based and Block-Structured Business
Process Modelling Languages,” Enterprise Modelling and
Information Systems Architectures, vol. 4, no. 1, pp. 3–13,
2009.

[11] OMG, Business Process Model and Notation, January 2011,
v2.0.

[12] C. Gutschier, R. Hoch, H. Kaindl, and R. Popp, “A Pitfall with
BPMN Execution,” in Second International Conference on
Building and Exploring Web Based Environments, Chamonix,
France, April 2014, pp. 7–13.

[13] E. Börger, “Approaches to modeling business processes: a
critical analysis of BPMN, workflow patterns and YAWL,”
Software & Systems Modeling, vol. 11, no. 3, pp. 305–318,
2012.

[14] S. Harrer and J. Lenhard, “Betsy–A BPEL Engine Test System,”
Otto-Friedrich Universität Bamberg, Tech. Rep. 90, July 2012.

[15] S. Harrer, C. Preißinger, and G. Wirtz, “BPEL Conformance
in Open Source Engines: The Case of Static Analysis,” in
Proceedings of the 7th IEEE International Conference on
Service-Oriented Computing and Applications (SOCA’14).
IEEE, 17–19 November 2014, (to appear).

[16] S. Harrer, C. Röck, and G. Wirtz, “Automated and Isolated
Tests for Complex Middleware Products: The Case of BPEL
Engines,” in Software Testing, Verification and Validation Work-
shops (ICSTW), 2014 IEEE Seventh International Conference
on, Cleveland, Ohio, USA, April 2014, pp. 390 – 398, Testing
Tools Track.

[17] E. J. Weyuker and F. I. Vokolos, “Experience with Performance
Testing of Software Systems: Issues, an Approach, and Case
Study,” IEEE Trans. Softw. Eng., vol. 26, no. 12, pp. 1147–
1156, December 2000.

[18] M. Woodside, G. Franks, and D. C. Petriu, “The Future of
Software Performance Engineering,” in Future of Software
Engineering, 2007. FOSE’07. IEEE, May 2007, pp. 171–187.

[19] C. Röck, S. Harrer, and G. Wirtz, “Performance Benchmarking
of BPEL Engines: A Comparison Framework, Status Quo
Evaluation and Challenges,” in 26th International Conference
on Software Engineering and Knowledge Engineering (SEKE),
Vancouver, Canada, July 2014, pp. 31–34.

[20] A. Avritzer, J. Kondek, D. Liu, and E. J. Weyuker, “Software
Performance Testing Based on Workload Characterization,” in
Proceedings of the 3rd International Workshop on Software
and Performance (WOSP ’02). New York, NY, USA: ACM,
2002, pp. 17–24.

[21] G. Din, K.-P. Eckert, and I. Schieferdecker, “A Workload
Model for Benchmarking BPEL Engines,” in IEEE Inter-
national Conference on Software Testing Verification and
Validation Workshop, 2008. ICSTW ’08., April 2008, pp. 356–
360.

[22] D. Bianculli, W. Binder, and M. L. Drago, “Automated
Performance Assessment for Service-oriented Middleware:
A Case Study on BPEL Engines,” in Proceedings of the 19th
International Conference on World Wide Web (WWW ’10).
New York, NY, USA: ACM, 2010, pp. 141–150.

[23] L. Juszczyk, H.-L. Truong, and S. Dustdar, “GENESIS - A
Framework for Automatic Generation and Steering of Testbeds
of ComplexWeb Services,” in Engineering of Complex Com-
puter Systems, 2008. ICECCS 2008. 13th IEEE International
Conference on, March 2008, pp. 131–140.

[24] R. M. Dijkman, M. Dumas, and C. Ouyang, “Semantics and
analysis of business process models in BPMN,” Information
and Software Technology, vol. 50, no. 12, pp. 1281–1294,
2008.

[25] P. Van Gorp and R. Dijkman, “A Visual Token-based Formal-
ization of BPMN 2.0 Based on In-place Transformations,” Inf.
Softw. Technol., vol. 55, no. 2, pp. 365–394, Feb. 2013.

[26] M. Geiger and G. Wirtz, “BPMN 2.0 Serialization - Standard
Compliance Issues and Evaluation of Modeling Tools,” in
5th International Workshop on Enterprise Modelling and
Information Systems Architectures, St. Gallen, Switzerland,
September 2013, pp. 177–190.

[27] ——, “Detecting Interoperability and Correctness Issues in
BPMN 2.0 Process Models,” in ZEUS, Rostock, Germany,
February 21-22, 2013, ser. CEUR Workshop Proceedings.
CEUR-WS.org, Feb 2013, pp. 39–42.

[28] W. M. P. van der Aalst, B. F. can Dongen, J. Herbst,
L. Maruster, G. Schimm, and A. J. M. M. Weijters, “Work-
flow mining: A survey of issues and approaches,” Data &
Knowledge Engineering, vol. 47, no. 2, pp. 237–267, February
2003.

[29] T. Rademakers, Activiti in Action: Executable Business Pro-
cesses in BPMN 2.0. Greenwich, CT, USA: Manning
Publications Co., 2012.

[30] M. zur Muehlen and J. Recker, “How Much Language
Is Enough? Theoretical and Practical Use of the Business
Process Modeling Notation,” in Advanced Information Systems
Engineering, 20th International Conference, CAiSE 2008,
Montpellier, France, June 16-20, 2008, Proceedings. Springer
Berlin Heidelberg, 2008, pp. 465–479.

[31] J. Lenhard and G. Wirtz, “Measuring the Portability of
Executable Service-Oriented Processes,” in Proceedings of
the 17th IEEE International EDOC Conference. Vancouver,
Canada: IEEE, September 2013, pp. 117 – 126.

