
Towards Automated Conformance Checking of ebBP-ST Choreographies and
Corresponding WS-BPEL Based Orchestrations

Matthias Geiger, Andreas Schönberger and Guido Wirtz

Distributed and Mobile Systems Group, University of Bamberg
Feldkirchenstr. 21, 96052 Bamberg, Germany

E-mail: {matthias.geiger | andreas.schoenberger | guido.wirtz}
@uni-bamberg.de

Abstract

Web Services technologies are a natural candidate
for Business-to-Business integration (B2Bi). For cross-
organizational processes, the concepts of “choreography”
and “orchestration” are important. The term choreogra-
phy denotes a model of a global view over message ex-
change scenarios, whereas the term orchestration focuses
on models of the local implementation. While WS-BPEL is
already kind of a de-facto standard in the field of orches-
tration languages, there does not exist a standard chore-
ography language. We propose the usage of ebXML BPSS
(ebBP) in order to provide choreography modeling at the
business level. A frequent problem is to ensure and en-
force the consistency and conformance of choreography and
orchestration models which is often referred to as “con-
formance checking”. In this paper we examine a way to
check the conformance between ebBP-ST (a subset of ebBP)
choreographies and corresponding WS-BPEL based imple-
mentations. To achieve this check well-known and approved
model checking methods and tools are used: First ebBP-ST
choreographies are directly transformed into the process al-
gebra CCS. Second, the low level WS-BPEL processes are
analyzed for code blocks that implement choreography ele-
ments and the sequence of these code blocks is then mapped
to CCS, too. Afterwards these formalized representations
will be checked for bisimulation equivalence in order to
reveal inconsistencies between the choreography and their
implementations.

Keywords: SOA, choreography, orchestration, confor-
mance checking

1. Introduction

In the domain of Business-2-Business integration (B2Bi)
Web Services technologies provide a suitable solution for

integrating the cross-organizational business processes. As
in B2Bi scenarios a global coordinator cannot be assumed,
the distinction between choreographies and orchestrations
is important: Choreographies define a process from a global
perspective which may be seen as a communication con-
tract between the integration partners involved. Orchestra-
tions describe the local, executable implementation for each
of the partners. In the B2Bi domain the ebXML Business
Process Specification Schema (ebXML BPSS or ebBP; [8])
is a suitable choice for choreography modeling as it pro-
vides several features that are well-suited for the business
domain. One core concept of ebBP is the usage of so-called
Business Transactions (BTs) to model the exchange of a
single business document from a sending to a receiving role
- optionally followed by a response document and so-called
Business Signals which notify the senders about the pro-
cessing status of the exchanged documents. More complex
scenarios composed of more document exchanges may be
modeled as Business Collaborations (BCs). Within BCs,
Business Transaction Activities (BTAs) are used to require
the execution of BTs and to map BC roles to the roles of the
previously defined BTs. The control flow and the ordering
between BTAs is modeled in BCs using basic control flow
constructs like Transitions, Decisions, Forks and Joins.

In [9], an ebBP dialect called ebBP-ST is presented to
introduce explicitly modeled Shared States (STs) into ebBP
choreographies which leads to clearer models in complex
scenarios by providing control flow synchronization points.

In order to execute the choreography models defined in
ebBP-ST, they have to be transformed into executable or-
chestrations. In the area of Web Services technologies the
Web Services Business Process Execution Language (WS-
BPEL; [7]) is the de-facto standard for realizing orchestra-
tions which is also used in [9] to implement ebBP-ST chore-
ographies.

For enabling executable orchestrations the integration ar-
chitecture depicted in figure 1 is assumed between two part-
ners A and B. These partners use backend components to

encapsulate business logic and control processes to enforce
the correct sequence of message exchanges as defined in
ebBP-ST choreographies. In this paper, we investigate au-
tomated conformance checking of WS-BPEL based control
process implementations and ebBP-ST choreography defi-
nitions.

Figure 1. Integration Architecture (adapted
from [9])

The paper proceeds as follows: First, in Sec. 2 a use case
which serves as a running example is introduced. In section
3, the approach of checking ebBT-ST choreographies and
WS-BPEL orchestrations is presented by clarifying which
process models are supported, choosing a suitable confor-
mance notion, introducing algorithms to transform ebBP-
ST resp. WS-BPEL to the process algebra CCS [5], and
describing the actual conformance check. The paper con-
cludes with a discussion of related work and an outlook on
ongoing research.

2. Use Case

Throughout the paper an excerpt of a purchasing use case
between two partners shall be used to clarify the proposed
approach. A visual representation of this ebBP-ST chore-
ography is given in Fig. 2. The use case consists of three
different STs and BTAs: The process starts with the ST
“initPurchase” in which the BTA “requestQuote” has to be
performed. This BTA defines the exchange of a business
document containing a quote request. In the subsequent de-
cision it is checked whether the request could be success-
fully transfered to the receiver (“BusinessSuccess”) or not
(“TechnicalFailure”). In case of a “TechnicalFailure”, the
current ST “initPurchase” is not left and the BTA has to be
repeated. Otherwise, if the result is “BusinessSuccess” the
process enters the new ST “receivedQuote”.

When a quote has been received successfully it may be
accepted by a corresponding BTA “acceptQuote” which
leads to another ST “concludedContract” in case this BTA
finished with a “BusinessSuccess”, otherwise the BTA shall
be repeated. The other option in ST “receivedQuote”
is to request another quote by performing the BTA “re-
questQuote” again. The decision afterwards evaluates
whether the BTA has been executed successfully or not.
Here in both cases the process will be resumed in ST “re-
ceivedQuote”. The difference between both paths is that the
ST shall not be left in case the BTA finished with a “Tech-
nicalFailure”, i.e., the timer defined for the BTA shall not

be reset, but shall be reentered with resetting the timer in
case of a “BusinessSuccess”. Note that this fact is not re-
spected in the visualization of the use case in Fig. 2. The
last aspect to consider is that a ST may be left by a timeout
event. Here, a timeout occuring in ST “initPurchase” and
“receivedQuote” will terminate the process in the end state
“TechnicalFailure”. The further progress of the purchase
scenario, e.g., shipment and billing is left out here.

Figure 2. ebBP Structure of the Use Case

3. Conformance Checking ebBP and WS-
BPEL

Figure 3 gives a brief overview of the proposed confor-
mance checking approach: First, the given ebBP-ST chore-
ography model and the corresponding WS-BPEL orchestra-
tions which should be checked have to be transformed into a
common formal representation. The process algebra CCS is
appropriate for the scope of our analysis. After transform-
ing ebBP resp. WS-BPEL into CCS models, the orches-
tration CCS models can be checked for conformance to the
choreography model successively. As conformance is seen
as a binary decision in our work, the conformance check re-
turns whether the checked orchestration model conforms to
the choreography specification or not.

3.1. Supported Process Definitions

Before describing the approach of checking the confor-
mance between ebBP and WS-BPEL it has to be clarified
which kind of processes are supported. As mentioned in the
previous section, ebBP-ST models are used to model ebBP

Figure 3. Proposed Approach (Overview)

choreographies. Our approach supports arbitrary ebBP-ST
models which are valid regarding the formal definitions and
rules for well-formedness in [9]: ebBP-ST models may be
formalized as a 5-tuple (R,N,G, φ, θ) where R is a set of
participants, N is a set of allowed ebBP nodes, G is a set
of guards, φ is a function that assigns timeouts to each ST
and θ is a transition relation which defines all allowed tran-
sitions. The set of nodes N = {s0} ∪ ST ∪ SBTA ∪
DEC ∪ T contains the ebBP concepts of a starting node,
shared states, business transaction activities, decisions and
end states which are used to model choreographies. Some
important restrictions of ebBP-ST models are that only bi-
nary collaborations are supported, ebBP Forks and Joins are
not allowed and STs may not overlap. The introduced use
case is an example of a rather simple, well-formed model
which uses all main aspects of ebBP-ST.

While a formal model of ebBP-ST and its semantics, is
given in [9], such a formalization is not provided for the cor-
responding WS-BPEL implementations. There exist vari-
ous formalisms for WS-BPEL (see [10]) but all of them are
intended to directly formalize low level WS-BPEL language
constructs, which would create much too detailed models
for our use cases as we are only interested in a formal rep-
resentation of the control flow between WS-BPEL patterns
that realize ebBP choreography concepts. For this purpose
the ebBP formalization is adapted to the WS-BPEL realiza-
tions: With respect to the set of nodes N it is obvious that
all of these aspects have to be represented in WS-BPEL.
Concepts such as BTAs may not be directly mapped to WS-
BPEL but need to be expressed by more complex combi-
nations of various elements. Possible WS-BPEL patterns
to implement a given ebBP-ST choreography are also intro-
duced in [9].

3.2. Conformance Notion - Why Bisimulation?

Conformance checking is not a new problem in the field
of Web Services technologies, in fact, conformance check-
ing techniques have been proposed for various combina-
tions of choreography and orchestration languages. But as
the notion of conformance is highly dependent on the con-
text there does not exist a commonly accepted definition

of the term conformance. A straightforward informal def-
inition is: An orchestration should be declared as conform
to a choreography if all orchestration executions do not vi-
olate the predefined protocol. As conformance checking
problems are a specialization of the widely researched pro-
cess equivalence problem, solutions from this domain can
be used in order to specify the conformance notion more
precisely. When looking at the message level, it is widely
accepted that so-called trace equivalence which only ana-
lyzes the flow of exchanged messages is too weak to check
conformance (e.g., [4]). Bisimulation equivalence [6], as
another classical process equivalence notion, frequently is
regarded as too strict for conformance checks. In most of
the related work, the conformance notion distinguishes be-
tween incoming and outgoing message flows. An orches-
tration has to respect all incoming messages in order to be
conform to the choreography. In case of outgoing commu-
nication, at least one (of possibly more) alternatives has to
be implemented in the orchestration. An example is the
ST “receivedQuote” in our use case, as two different BTAs
(“acceptQuote” and “requestQuote”) may be initiated by
the potential customer here. The customer does not have
to implement the possibility of performing the BTA “re-
questQuote” which means that he always performs “accep-
tQuote” and therefore all quotes have to be accepted (or the
process is left by a timeout). Conversely the seller has to im-
plement both execution possibilities as from his viewpoint
it is not clear which BTA may be performed next.

However, for our conformance checking scenarios this
conformance notion is not suitable as it cannot be applied
to our integration architecture: We differentiate between the
actual orchestration implementations in the so-called con-
trol processes and the existing backend systems that encap-
sulate business logic. Regarding the incoming information
the already proposed conformance condition is not critical:
The control processes must be able to react to all possible
incoming events as they do not know how the partner will
react. But the less strict requirements for outgoing informa-
tion are only possible if the orchestration is directly decid-
ing which steps should be performed next. In our architec-
ture (cf. Fig. 1), the control processes delegate this decision
to the backend systems which trigger the subsequent pro-
cess flow. So, the control processes must be able to react
to all possible backend decisions and must also be able to
produce all allowed outgoing communication specified in
the choreography. Therefore the conformance requires the
rather strict notion of weak bisimulation equivalence.

The formal model used to perform conformance checks
is the process algebra Calculus of Communicating Systems
(CCS) developed by Milner [5]. For our purposes, the main
aspects of CCS are sufficient to express our integration
models: Processes (starting with a capital letter) are
defined by an assignment. Linking to processes is done by

using the name of a predefined process in a process body.
Sequences are built using the “.” operator and choices
may be created with the operator “+”. Therefore, e.g., “P1
= action1.((action2.P2)+(action3.P3))”
defines the process P1 in which after performing action
“action1” either “action2” is performed followed by
the execution of the process “P2” or “P3” is performed
after “action3”.

3.3. ebBP-ST to CCS Transformation

The basic principle of transforming an ebBP-ST chore-
ography model into a CCS representation is to define a CCS
process for each ST and each end state used in the choreog-
raphy whereas timeout events, the execution of BTAs and
their evaluation in decisions will be represented by CCS ac-
tions. Algorithm 1 shows the concrete steps needed in order
to transform ebBP-ST choreographies to CCS.

As shown in line 1-3, for each end state t ∈ T a process
is defined using the prefix “END ” followed by the name
of the state. The process body simply contains a single
action named by the corresponding end state in order to
distinguish different end states and the CCS empty element
“0”. The actual creation of the process is performed
by the method CreateProcess(processName,
processBody) which creates a CCS process with the
name processName containing the processBody .

In comparison to this, the transformation rules for STs
are much more complex: As described before and in [9]
a timer should be started when entering a ST. But it also
should be possible to reenter an already visited ST without
resetting this timer. In order to describe this behavioral dif-
ference, two different CCS processes for each shared state
are created. An outer process definition “ST STname”
simply performs a start timer action and then links to
an inner process definition (named “INNER ST STname”)
which contains the actual control flow logic (stored in vari-
able processBody) of a shared state (ll. 28/29, Alg. 1).

BTAs, Decisions and Timeouts are realized in CCS
using actions. Therefore each possible BTA in each
ST followed by the decision evaluation is added to
the ST process body (Alg. 1, line 20) using the
method AddBTA(processBody, btaToAdd) which
combines the allowed BTAs with the “+” operator. BTAs
are simply mapped by a single CCS action named like the
BTA sequentially followed by the decision. The different
decision branches are realized using the CCS choice oper-
ator (“+”): First, each guard is translated to a CCS action
followed by a link to the CCS process of the subsequent ST
and afterwards all of these constructs are combined using
the AddDec method. A flag f indicates whether a timeout
should be reset or not: If f == {tt} (l.10) the outer pro-
cess definition will be used, otherwise it will be linked to

the inner process definition of the subsequent ST.
Applying the algorithm to our use case will clar-

ify the output of the algorithm which is presented in
listing 1: Line 1 shows the outer process definition
“ST receivedQuote”, the following lines 2-11 describe
the actual control flow logic: The two BTAs allowed and
the timeout event are combined as a CCS choice. The
execution of a BTA is represented by a CCS action (e.g.,
“bta requestQuote” in line 7). The decision after
this BTA evaluates whether the BTA has been a “Busi-
nessSuccess” (BS) or a “TechnicalFailure”. If the BTA
was successful the ST “receivedQuote” should be reen-
tered and the timer should be reset. Therefore the ref-
erenced CCS process is “ST receivedQuote” (line 9
in List. 1). As the timer should not be reset in case
of a “TechnicalFailure”, the internal process definition
“INNER ST receivedQuote” is referenced in line 8.

The other STs in the use case are transformed in the same
way.

Listing 1. CCS Representation of the Use
Case (Excerpt)

1 ST_receivedQuote = start_timer.INNER_ST_receivedQuote
2 INNER_ST_receivedQuote =
3 (bta_acceptQuote.(
4 (dec_acceptQuote_TF.INNER_ST_receivedQuote)+
5 (dec_acceptQuote_BS.ST_concludedContract)
6)
7)+(bta_requestQuote.(
8 (dec_requestQuote_TF.INNER_ST_receivedQuote)+
9 (dec_requestQuote_BS.ST_receivedQuote)

10)
11)+(timeout.END_TechnicalFailure)

3.4. WS-BPEL to CCS Transformation

The aim of transforming WS-BPEL to CCS is to check
whether the WS-BPEL implementations conform to the
predefined ebBP-ST choreography models. As mentioned
before, we are not interested in low-level formal models but
in a representation which allows for this check. For exam-
ple, there is no need to model the concrete implementation
of a BTA including all WS-BPEL sequences, scopes, in-
vokes, etc. in CCS because for our purposes it is only rele-
vant whether a BTA may be performed in a ST or not. So,
the most important task for transforming WS-BPEL to CCS
is to detect the used patterns which express the different
concepts of ebBP and afterwards transforming the sequence
of patterns into CCS. When looking at an ebBP decision, a
possible WS-BPEL implementation pattern may send the
previously exchanged Business Document to the backend
systems (invoke statement) which analyze the outcome and
the result is stored in a variable (assign). Afterwards in a

Algorithm 1: ebBP to CCS Transformation
Input: A valid ebBP-ST choreography (R, ({s0} ∪ ST ∪ SBTA ∪DEC ∪ T), G, φ, θ) to be transformed
Output: A CCS representation of this choreography
Algorithm:

1 foreach t in T do
2 CreateProcess(“END ” + t.name, “end ”+t.name+“.0”)
3 end

4 foreach st in ST do
5 processBody = “ ”;
6 foreach (st, {tt}, bta) in θ do
7 decisions = “ ”;
8 foreach (bta, {tt}, dec) in θ do
9 foreach (dec, g, f, nextST) in θ do

10 if (f == {tt}) then
11 AddDec(decisions, “(dec ”+dec.name+“ ”+g.name+“.ST ”+nextST.name+“)”)
12 else
13 AddDec(decisions, “(dec ”+dec.name+“ ”+g.name+“.INNER ST ”+nextST.name+“)”)
14 end
15 end
16 foreach (dec, g, t) in θ do
17 AddDec(decisions, “(dec ”+dec.name+“ ”+g.name+“.END .”+t.name+“)”)
18 end
19 end
20 AddBTA(processBody, “(bta ”+bta.name+“.(”+decision+“))”)
21 end
22 if ∃(st, gto, nextST) in θ then
23 processBody += “+(timeout.ST ”+nextST.name+“)”
24 end
25 if ∃(st, gto, t) in θ then
26 processBody += “+(timeout.END ”+t.name+“)”
27 end
28 CreateProcess(“ST ”+st.name, “start timer.INNER ST”+st.name))
29 CreateProcess(“INNER ST ”+st.name, processBody)
30 end
31 CreateProcess(“Start”, “ST ”+firstST.name)

series of if statements it is checked which result has been
evaluated and the switch to the next state is initiated.

After all such patterns and their ordering have been iden-
tified, the transformation to CCS is similar as for ebBP-ST.
In case of the decision example, each decision branch is
transformed to a CCS sequence, containing an action in-
dicating the decision, followed by a reference to the CCS
process of the next state.

3.5. Checking the Conformance

After transforming the ebBP-ST choreography model
and the two corresponding WS-BPEL orchestrations to
CCS, the actual conformance checks can be performed.

Therefore each CCS orchestration model has to be checked
against the choreography representation for bisimulation
equivalence. The result of each bisimulation equivalence
check is (see Fig. 3) the binary answer whether an orches-
tration is conform to the choreography definition or not.

An advantage of this checking approach is that the two
different implementations may be analyzed independently,
i.e., it is not necessary to analyze the implementation of a
partner who possibly does not want to publish his internal
orchestration models.

Note that CCS is supported by various model checking
tools (e.g. the Edinburgh Concurrency Workbench (CWB)1)

1available at: http://homepages.inf.ed.ac.uk/perdita/
cwb/

and therefore the check can be automatically executed using
such a tool. Using the proposed CWB model checker we are
able to prove the conformance of the WS-BPEL implemen-
tations as well as to detect various intentionally produced
faults in orchestrations.

4. Related Work

Conformance checking problems have been investigated
for various choreography and orchestration languages:

For example the work of Baldoni et al. (i.a.,[1]) is rather
generic and uses automata representations to model chore-
ographies and orchestrations. Martens ([4]) discusses rather
extensively suitable conformance notions for conformance
checking problems and proposes a formalization of abstract
and executable WS-BPEL processes using Petri Nets. A
proposal for the Web Services Choreography Description
Language (WS-CDL) has been developed by Foster et al.
([3]) who use Finite State Processes (FSP) to represent WS-
CDL and WS-BPEL. The actual check is based on trace
equivalence. The only work that we are aware of which is
dealing with conformance checking ebBP and WS-BPEL
is [12] which uses the process algebra Communicating Se-
quential Processes (CSP) to perform so-called traces refine-
ment to check the conformance. The common problem of
all these approaches is that they do not use the strict confor-
mance notion we propose in this work. As we have shown
above the proposed weaker notions are suitable for the con-
texts considered in the various papers, but it is not appropri-
ate for the integration scenario we assume.

Another approach which uses a stricter conformance no-
tion when checking WS-CDL choreographies is presented
in [11]: The authors derive a new formalism called piX-
Model to formally represent WS-CDL choreographies. The
piX-Model is based on the well-known π-calculus and open
bisimulation is used as conformance notion.

Apart from conformance checking there exist various ap-
proaches to formalize WS-BPEL (see [10] for an overview).
A WS-BPEL formalization using CCS is presented in [2].
Generally these formalizations are not perfectly suitable for
our approach because they provide direct mappings for ba-
sic WS-BPEL constructs while we concentrate on those pat-
terns that realize ebBP concepts.

5. Conclusion and Future Work

In this paper, we have introduced an approach for check-
ing the conformance between ebBT-ST choreographies and
corresponding WS-BPEL based orchestrations. The key el-
ements of this approach are the proposed transformation al-
gorithms to CCS which allow for a common representation
of ebBP-ST and WS-BPEL in order to perform the actual

conformance check by a bisimulation equivalence check.
Preliminary results show the general applicability and cor-
rectness of our approach.

Ongoing research now concentrates on relaxing the re-
quirements concerning the structure of the WS-BPEL pro-
cesses by using existing WS-BPEL semantics. Furthermore
we are working on better usability, such as integrating the
proposed tool chain to improve the work flow and direct
highlighting of detected conformance issues in the original
ebBP-ST and WS-BPEL definitions.

References

[1] M. Baldoni, C. Baroglio, A. K. Chopra, N. Desai, V. Patti,
and M. P. Singh. Choice, interoperability, and conformance
in interaction protocols and service choreographies. In 8th
Int. Joint Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2009), Budapest, Hungary, May, 2009, pages
843–850. IFAAMAS, 2009.

[2] J. Cámara, C. Canal, J. Cubo, and A. Vallecillo. Formaliz-
ing wsbpel business processes using process algebra. Electr.
Notes Theor. Comput. Sci., 154(1):159–173, 2006.

[3] H. Foster, S. Uchitel, J. Magee, and J. Kramer. WS-
Engineer: A Model-Based Approach to Engineering Web
Service Compositions and Choreography. In Test and Anal-
ysis of Web Services, pages 87–119. Springer, 2007.

[4] A. Martens. Consistency between Executable and Abstract
Processes. In 2005 IEEE Int. Conf. on e-Technology, e-
Commerce, and e-Services (EEE 2005), Hong Kong, China,
pages 60–67. IEEE Computer Society, 2005.

[5] R. Milner. A Calculus of Communicating Systems, vol-
ume 92 of Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg, 1980.

[6] R. Milner. Communication and concurrency. Prentice Hall,
Harlow, 1989.

[7] OASIS. Web Services Business Process Execution Lan-
guage Version 2.0 (WSBPEL), 2.0 edition, April 2007.

[8] OASIS. ebXML Business Process Specification Schema
Technical Specification, v2.0.4 edition, Oktober 2006.

[9] A. Schönberger, C. Pflügler, and G. Wirtz. Translating
shared state based ebXML BPSS models to WS-BPEL.
Int. Journal of Business Intelligence and Data Mining,
5(4):398–442, 2010.

[10] F. van Breugel and M. Koshkina. Models and Ver-
ification of BPEL. Unpublished Draft, Available
at: http://www.cse.yorku.ca/˜franck/
research/drafts/tutorial.pdf, September
2006.

[11] G. van Seghbroeck, B. Volckaert, F. D. Turck, B. Dhoedt,
and P. Demeester. Web service choreography conformance
verification through the pix-model. Int. J. Cooperative Inf.
Syst., 19(1-2):1–30, 2010.

[12] W. L. Yeung. A Formal Basis for Cross-Checking ebXML
BPSS Choreography and Web Service Orchestration. In
APSCC ’08: Proc. of the 2008 IEEE Asia-Pacific Services
Computing Conf., pages 524–529, Washington, DC, USA,
2008.

