
Performance Benchmarking of BPEL Engines:
A Comparison Framework, Status Quo Evaluation and Challenges

Cedric Röck, Simon Harrer and Guido Wirtz

Distributed Systems Group, University of Bamberg
An der Weberei 5, 96047 Bamberg, Germany

E-mail: {cedric.roeck | simon.harrer | guido.wirtz}@uni-bamberg.de

Abstract

Despite the popularity of BPEL engines to orchestrate com-
plex and executable processes, there are still only few ap-
proaches available which help to find the most appropriate
engine for individual requirements. One of the more crucial
comparison factors for middleware products in industry are
the performance characteristics. There exist multiple studies in
both industry and academia testing the performance of BPEL
engines, which differ in focus and method. We aim to compare
the methods used in these approaches and provide guidance
for further research in this area. Based on the related work in
the field of performance testing, we created a process engine
specific comparison framework, which we used to evaluate
and classify nine different approaches that were found via a
systematical literature survey. With the results of the status quo
analysis in mind, we derived directions for further research in
this area.

Keywords: SOA, BPEL, engines, performance testing

1. Introduction

Over the past few years, the research concerning the Web
Services Business Process Execution Language (BPEL) [21]
made huge progress and focused on arising chances and chal-
lenges for businesses [5]. Based on service-oriented archi-
tectures (SOAs), one of the major trends in the development
of business information systems, BPEL steadily became the
standard for Web Service based business orchestrations [15].
Strongly connected to the growing popularity is the develop-
ment of more complex systems, which also leads to an in-
creased error-proneness of the developed software [3]. There-
fore, the need to intensively test those SOAs also gains more
importance. However, there still is a tremendous deficit in
terms of proper testing tool support, which has been consid-
ered to be one of the major problems of SOAs [6].

A classic goal of performance testing has always been to
compare competing platforms, allowing the selection of the
best fitting product for particular needs [28]. Despite the grown
acceptance of SOAs, performance testing in this area still

lacks some major aspects. While the number of approaches
steadily grows, the majority focuses solely on the evaluation
of single Web services instead of middleware components
or even complete systems [13]. However, “the middleware
used to build a distributed application often determines the
overall performance of the application” [8, p. 2] and should
therefore be considered at least as carefully as the choice of
partner services involved in a process. Looking at performance
testing of BPEL processes and their engines, a few studies
have been conducted in industry and academia. But there is no
standardized benchmark, let alone a commonly agreed upon
testing methodology [7]. As a consequence, the current view
on the status quo and further research topics is clouded. In
this work, we aim to provide a clear view on both, the current
state in performance testing of process engines and further
challenges in this area.

Our contribution1 comprises three parts. First, the cre-
ation of a framework to compare performance benchmarking
approaches of process engines in Section 2. Second, a liter-
ature survey of the status quo in performance benchmarking
of BPEL engines reusing the previously created comparison
framework in Section 3. Third, directions on improving per-
formance benchmarking of process engines are given based on
the comparison results in Section 4. Our work concludes in
Section 5, which also outlines future work.

2. Comparison Framework and its Criteria

Performance testing refers to the usually technical examina-
tion of a system under test (SUT) with the aim to analyse and
validate a product’s characteristics. It is known for allowing
a measurement-based comparison of different products and
platforms under similar conditions, hence offering valuable
information for purchase decisions [28]. Furthermore, it is also
used to identify bottlenecks and verify the requested quality
of service (QoS) attributes in nearly finished software, i.e.,
whether nonfunctional performance requirements are met [29].
According to Koziolek [14], the performance of a software
component is influenced by five factors: its implementation,
the usage profile, deployment platform, required services, and

1For more details, see the accompanying technical report [22].

resource contention. Based on these influences, we created a
framework to enable the classification of BPEL engine perfor-
mance tests. In the following, we present four primary and
three secondary criteria, by which performance tests can be
analysed and made comparable.

Measurement based performance tests can be executed in
several ways depending on the intended purpose of the test.
These different strategies establish the types of performance
tests, namely baseline, stress and load tests [18]. Baseline
tests measure the response time behaviour of an application
with only a single request or user, hence represent the best-case
scenario. It can be used for product comparison or as a bench-
mark baseline for other test types, e.g., for load tests [20, pp.
38-40]. A load test verifies the application behaviour in typical
and expected situations, including load peaks with multiple
concurrent users. It is often used to assure performance related
QoS attributes [18] [19, p. 291]. Pushing an application be-
yond the expected level of load and peak conditions is called
stress testing. Its goal lies in revealing bugs and unexpected
behaviour that only appear in extreme conditions [18]. The
results reflect the worst-case scenario and unearths the capacity
limits of the system under test [20, pp. 38-40] [19, p. 291].

Workloads are defined as the sum of all inputs that are
received by the SUT. They are considered to be one of the
key aspects for assuring the validity of performance test re-
sults [19,25,28,29]. In the context of BPEL engines, workloads
consist of the invoked processes and their dependent Web ser-
vices, but also include the request messages and the strategy
for sending these requests. According to [19, pp. 265-266], the
workload of software performance benchmarks can be cate-
gorised into four workload types. Basic operations refer to the
smallest operations, i.e., all supported and standardized activi-
ties in the context of a BPEL engine, and supply fine-grained
performance characteristics. Toy-benchmarks, usually imple-
menting classic puzzles or being proof-of-work concepts, are
of not much use for performance tests. Kernels are core parts
of real programs. They represent the most important or time
consuming parts and provide an intermediate level in terms
of granularity and realism. In our context, kernel processes
implement patterns, e.g., the workflow patterns [27] that were
extracted from a large corpus of real world processes. Real
programs, or real processes in our case, are often seen as the
most important workload type as their results are most accurate
for estimating the performance of production systems [2, 25].
Therefore, real workloads are also used in other domains, e.g.,
for benchmarking SQL databases with TPC-C.

Workload injection strategies can be subdivided into a)
continuously injecting the workload and b) injecting the work-
load with an arrival rate. Continuously injected workloads
test the engine with a constant load, once reaching the plateau
phase. This plateau, however, can either be reached with a big
bang (default approach), or stepwise, by slowly increasing the
number of concurrent users over a specific period [20, p. 41].
The arrival rate can be either fixed or dynamic to simulate
even more realistic peaks [25].

If the SUT and load generating clients are co-located, one

has to closely observe the system for overloads. Therefore,
they are often installed on separate systems, i.e., distributed.
Moreover, a separation allows the load to be created from
distributed clients, providing more realistic situations and as-
suring the saturation of the SUT.

The evaluation of software performance usually considers
multiple metrics. In this study, we use three performance
metrics: latency, throughput and utilization. The latency or
response time [8] defines the time span between sending a
request and having received the full response. It is influenced
by multiple factors, e.g., the execution of partner services, net-
work delays and message parsing [24]. Throughput is the most
commonly used metric for software performance, defining the
number of transactions that are completed within a period. In
the context of BPEL engines, the term transaction can refer
either to the completion of requests or process instances. The
utilization reflects the degree to which a capacity is used and
refers to many parts of the testbed, e.g., the network, database,
server, or load-generating clients [20, p. 29]. As metrics dif-
fer in semantics and focus, they depend upon the test types.
For example, a baseline test using any throughput metric is
meaningless as there is only one active request at a time.

In addition to the primary criteria, we distinguish between
three secondary criteria. First, the number of the engines
and their license, being either open source or proprietary. Sec-
ond, the setup of the test bed, being either automated or done
manually, which has effects on the experiment’s reproducibility.
And third, as BPEL engines provide plenty of configuration
options, we distinguish whether the processes are executed
in-memory or not, which we denote as persistence.

3. Literature Study

The results of our systematic literature study2, i.e., the nine
approaches and their classifications, are shown in Table 1. Each
row and each column refers to an approach and a comparison
criterion, respectively. Cells represent the findings, with empty
cells denoting the absence of a criterion and cells marked n/a
denoting that the approach did not provide any data regarding
this criterion.

The benchmark conducted by SOABench [4] includes three
engines and performs load tests using four BPEL processes.
Two processes are built with the flow activity, the other two
use either the sequence or the while activity. All four pro-
cesses invoke mocked external services, thus, use the invoke
activity as well. The performance is measured via latency and
throughput metrics. Moreover, SOABench features the auto-
mated generation, execution and analysis of testbeds, allowing
reproducing the test results. Workloads are either injected
based on a given arrival rate, or delayed by a thinking time
between consecutive invocations.

The load test of OpenESB [26] is focused on throughput
metrics. Its workload is a single process, using all supported
BPEL activities, i.e., a toy benchmark, and is injected stepwise.

2The method is detailed in the accompanying technical report [22].

Table 1. Literature analysis, comparing most important performance test factors
Criteria Test Type Workload Workload Injection Metrics Engines Config Testbed

Approaches B
as

el
in

e

L
oa

d

St
re

ss

Ty
pe

#
of

Pr
oc

es
se

s

E
xt

.S
er

vi
ce

D
is

tr
ib

ut
ed

C
on

tin
uo

us
ly

St
ep

w
is

e

A
rr

iv
al

R
at

e

T
hr

ou
gh

pu
t

L
at

en
cy

U
tli

za
tio

n

O
pe

n
So

ur
ce

Pr
op

ri
et

ar
y

Pe
rs

is
te

nc
e

A
ut

om
at

ed

SOABench [4] x x basic 4 x x x x x x 2 1 x

OpenESB [26] x toy 1 n/a x x 1

ActiveVOS [1] x real 2 n/a n/a n/a n/a x 1 x

Sliver [10] x kernel 12 x x x x 2

Workload model [9] x toy 1 x x 1

Intel & Cape Clear [12] x real 2 x x x x x x 1 x

Roller [23] x real 1 x x x 1

SWoM [17] x basic 2 x x x x 3

FACTS [16] x real 1 x n/a n/a n/a n/a x 1

Similarly, throughput metrics are measured in the load test
of ActiveVOS [1]. The test uses two functional processes, with
one being analysed with persistence enabled or disabled.

In [10], Sliver is compared with ActiveBPEL, using a base-
line test measuring request latency and memory utilization.
The workload consists of twelve workflow patterns [27], i.e.,
kernels, realized as BPEL processes, which utilize external
services and are invoked in consecutive requests.

Validating their workload model, Din et al. [9] have per-
formed a load test that focused only on the response time
behaviour of the used ActiveBPEL engine. The tested process
uses correlations but does not call external services. The work-
load is injected by several virtual users over a total duration of
two minutes, injecting 20 new processes per second.

The load test of Intel and Cape Clear [12] focuses on latency,
throughput and utilization measures of the tested Cape Clear
7 engine. The two processes implement a typical industrial
functionality and invoke external services, while the workload
is continuously injected from a set of distributed clients Ad-
ditionally, the test focuses on the effect of persistence on the
performance metrics.

Verifying Roller’s [23] proposals, he has conducted a load
test on one proprietary engine and measured throughput met-
rics. The tested workload is a single realistic BPEL process,
including the invocation of external services, which is continu-
ously called by the testing clients.

Benchmarking three BPEL engines, Längerer et al. [17]
have conducted a load test focusing on throughput and latency
metrics. The workload, which is continuously injected, con-
sists of two processes. One uses the assign activity, the
other one calls an external service with the invoke activity.

The load test of Liu et al. [16] tests the response time be-
haviour of a single realistic process, which includes external
services and was deployed on the ActiveBPEL engine.

4. Discussion and Further Suggestions

This section analyses the findings of our evaluation and
discusses which parts of BPEL performance testing should be
strengthened in future work. As the approaches differ in many

aspects and follow no common schema, we focus on patterns
per criterion, i.e., compare the results column-wise.

The approaches mainly execute load tests, whereas, in ad-
dition, Bianculli et al. [4] also applies stress testing. Solely
Hackmann et al. [10] perform baseline tests, leaving room for
further evaluations, by means of baseline and stress tests.

The workload types differ for all approaches, with four
using real workloads, one using kernels, and two using basic
and toy each. For each workload, the number of processes
also varies, with four approaches using only a single process,
three using two, one using four and one using twelve processes.
The majority (6/9) uses processes that invoke external services,
thus the test always includes the performance characteristics
of the invoke activity. For the remaining approaches, two do
not use external services, while it is unknown for the last one.
For all workload types, a larger corpus of processes would help
to improve the meaningfulness of the test results. Regarding
the basic category, we propose to have a process per feature
to be able to compare their performance characteristics. For
kernel processes, we suggest to cover more pattern catalogues,
whereas for real processes, we propose to use distinct real
processes from various use cases in different domains. As
external services are a crucial part of BPEL processes, they
should not be neglected in further studies as well.

Concerning the workload injection, two approaches did not
mention it at all. For some approaches, it is neither stated, nor
can it be deducted. As it is a crucial part of a performance
evaluation, we advise to explicitly state the chosen strategy.

Regarding the metrics, latency and throughput are used by
six approaches each, whereas only two measure utilization.
In this context, Intel and Cape Clear [12] provide the most
complete approach as they measure all three metric types.
Three approaches use two metric types, while the majority (5/9)
measures only metrics of a single type. Hence, we propose
to focus on the neglected utilization metric, which can reveal
interesting characteristics of the engines as well as ensure that
there are no system overloads falsifying any results.

The number of engines under test range from one up to
three per approach, limiting their relevance for buying deci-
sions. Three approaches compare the performance of multiple

engines, while the remaining six evaluate the performance of
a single engine. Only SOABench [4] compares open source
with proprietary engines. But as the proprietary engine Ac-
tiveVOS incorporates the open source engine ActiveBPEL,
SOABench basically test the open source one. Hence, there
is no proper performance comparison of open source with
proprietary engines, leaving room for further work in this area.

Regarding the configuration opportunities of the BPEL en-
gines, only two approaches [1, 12], both evaluating only a
single engine, tested their engines in different configurations,
namely either execute their processes in-memory or not. As
most engines offer multiple options, it shows that this has been
neglected in research, despite its importance. However, when
comparing more than one engine, it has to be ensured that all
engines equally support the capability.

With only Bianculli et al. [4] allowing to automatically
setup the testbed and execute the tests, it is very hard to redo
the experiment for all other approaches. Moreover, only [4, 12,
17, 23] published their detailed test setup, processes and tools,
which are essential for the repeatability of these tests.

None of the approaches allow analysing the influence of
environmental aspects, for instance the system’s hardware,
database or influences of long-running transactions on the
engines’ performance. However, modern multi-core systems
and solid-state drives provide new challenges and opportunities
for differentiation among middleware products.

One additional problem is that none of the approaches takes
into account that BPEL engines greatly vary in their degree of
support of the BPEL specification [11], i.e., they implement
different subsets of the BPEL features. We propose to take
these results into account, creating and selecting appropriate
workloads for the engines to be compared.

5. Conclusion and Future Work

In our work, we created a comparison framework with
which existing performance benchmarking approaches of pro-
cess engines, and BPEL engines in particular, can be classified.
We applied our comparison framework onto nine methodically
found approaches, revealing their differences and similarities.
Based on the findings, we derived guidance for further research
in the areas which have been neglected so far.

In future work, we want to apply our comparison framework
and method onto other studies targeting other process engines
and their languages, and fill in the open gaps that were revealed
during this study.

References

[1] Active Endpoints Inc. Assessing ActiveVOS Performance.
http://bit.ly/R60NPy. 2014-01-30.

[2] A. Avritzer, J. Kondek, D. Liu, and E. J. Weyuker. Software
Performance Testing Based on Workload Characterization. In
WOSP, 2002.

[3] V. R. Basili and B. T. Perricone. Software Errors and Complex-
ity: An Empirical Investigation. CACM, 1984.

[4] D. Bianculli, W. Binder, and M. L. Drago. Automated Perfor-
mance Assessment for Service-oriented Middleware: A Case
Study on BPEL Engines. In WWW, 2010.

[5] M. Bozkurt, M. Harman, and Y. Hassoun. Testing and Verifi-
cation in Service-Oriented Architecture: A Survey. Software
Testing, Verification and Reliability, 2012.

[6] G. Canfora and M. D. Penta. Testing Services and Service-
Centric Systems: Challenges and Opportunities. IT Profes-
sional, 2006.

[7] S. Chen, L. Bao, and P. Chen. OptBPEL: A Tool for Perfor-
mance Optimization of BPEL Process. In Softw. Comp., 2008.

[8] G. Denaro, A. Polini, and W. Emmerich. Early Performance
Testing of Distributed Software Applications. In WOSP, 2004.

[9] G. Din, K.-P. Eckert, and I. Schieferdecker. A Workload Model
for Benchmarking BPEL Engines. In ICSTW, 2008.

[10] G. Hackmann, M. Haitjema, C. Gill, and G.-C. Roman. Sliver:
A BPEL Workflow Process Execution Engine for Mobile De-
vices. In ICSOC. 2006.

[11] S. Harrer, J. Lenhard, and G. Wirtz. BPEL Conformance in
Open Source Engines. In SOCA, 2012.

[12] Intel and Cape Clear. BPEL scalability and performance testing.
Technical report, Intel and Cape Clear, 2007.

[13] L. Juszczyk and S. Dustdar. Script-Based Generation of Dy-
namic Testbeds for SOA. In Socially Enhanced Services Com-
puting. Springer, 2011.

[14] H. Koziolek. Performance Evaluation of Component-based
Software Systems: A Survey. Performance Evaluation, 2010.

[15] T. v. Lessen, D. Lübke, and J. Nitzsche. Geschäftsprozesse
automatisieren mit BPEL [Automating Business Processes with
BPEL]. dpunkt.verlag, 2011.

[16] A. Liu, Q. Li, L. Huang, and M. Xiao. Facts: A framework
for fault-tolerant composition of transactional web services.
Services Computing, IEEE Transactions on, 2010.

[17] C. Längerer, J. Rutschmann, and F. Schmitt. Performance-
Vergleich von BPEL-Engines [Performance Comparison of
BPEL Engines]. Technical report, 2006.

[18] J. Meier, C. Farre, P. Bansode, S. Barber, and D. Rea. Per-
formance Testing Guidance for Web Applications: Patterns &
Practices. Microsoft Press, 2007.

[19] D. A. Menascé. Capacity Planning for Web Services: Metrics,
Models, and Methods. Prentice Hall, 2002.

[20] I. Molyneaux. The Art of Application Performance Testing.
O’Reilly Media, 2009.

[21] OASIS. Web Services Business Process Execution Language,
2007. v2.0.

[22] C. Röck, S. Harrer, and G. Wirtz. Testing BPEL Engine Perfor-
mance: A Survey. Technical report, Univ. of Bamberg, 2014.

[23] D. Roller. Throughput Improvements for BPEL Engines: Im-
plementation Techniques and Measurements Applied to SWoM.
PhD thesis, IAAS, Stuttgart, Germany, 2013.

[24] F. Rosenberg, C. Platzer, and S. Dustdar. Bootstrapping Perfor-
mance and Dependability Attributes of Web Services. In ICWS,
2006.

[25] A. J. Smith. Workloads (Creation and Use). Com. ACM, 2007.
[26] Sun Microsystems. Benchmarking BPEL Service Engine.

http://bit.ly/1jkssHd. 2014-01-30.
[27] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Bar-

ros. Workflow Patterns. Distributed and Parallel Databases,
2003.

[28] E. J. Weyuker and F. I. Vokolos. Experience with Performance
Testing of Software Systems: Issues, an Approach, and Case
Study. IEEE Trans. Softw. Eng., 2000.

[29] M. Woodside, G. Franks, and D. C. Petriu. The Future of
Software Performance Engineering. In FOSE, 2007.

