Supporting Service-Oriented Design with Metrics

Helge Hofmeister and Guido Wirtz
Distributed and Mobile Systems Group, Otto-Friedrich Universitit, Bamberg, Germany
Email: hofmeister @ecoware.de, guido.wirtz@uni-bamberg.de

Abstract

The service-oriented architectural style is widely
perceived today. However, service orientation is a very
general concept and its application in real-life situations is
somewhat ambiguous. This is partially due to the fact that
service-oriented principles are subject to interpretation
rather than elements of the style. In this paper we propose a
set of design metrics for service-oriented design. Based on
an established metric for the coupling of component-based
systems we introduce a complexity metric by the means of
service coupling. We argue that service aggregators and
the centralization of a system’s control flow is appropriate
to address a system’s complexity. In order to approach
an objective design that incorporates these principles, we
introduce four metrics for the analysis of how a system
handles its complexity with service-oriented means. Fi-
nally, we apply the presented metrics to an enterprise-scale
real-life case study that we have conducted.

Keywords: SOA, metrics, control centralization,
service aggregation, modifiability

1 Introduction

The service-oriented architectural style allows to build ap-
plications that reuse distributed functionality of hetero-
geneous application landscapes. It is an evolution of
component-based approaches that emphasis ”soft” design
principles (loose coupling, abstraction, autonomy — cf. [6]).
Applications that reuse functionality and expose their func-
tionality as web-based applications are so-called composite
applications [15]. Together, service orientation (SO) and
composite applications promise to protect the investment
into legacy landscapes by reusing the existent functional-
ity while allowing for adoption of business changes. This
is why SO is an approach that allows large organizations to
increase the modifiability of their application landscape and
especially of the business processes that are implemented.
However, when it comes to mid- to large-scale projects that
are conducted in large organizations, it becomes crucial that
the design of composite applications is not only conducted
and understood by a small group of specialists.

In this paper we propose a set of metrics that objectively
capture some important principles of SO and can be applied
throughout projects. By using (and refining) these met-
rics, organizations may build up a common understanding
of SO that helps both, to improve the overall attainability of
service-oriented principles and to communicate the differ-
ences of SO in comparison to more traditional approaches.
Hence, the application of the presented metrics supports the
proper realization of service-oriented architectures (SOA).
After presenting related work in section 2, we shortly in-
troduce in section 3 the concepts of service aggregation and
control centralization as mechanisms to increase the modifi-
ability of a system. The metrics that incorporate these ideas
are introduced and discussed in section 4. The interpreta-
tion of the metrics in the context of an enterprise-scale case
study is outlined in section 5. The paper concludes with an
outlook on future work in section 6.

2 Related Work

Starting in the mid-seventies and lasting till the mid-
nineties, software quality metrics were intensively re-
searched. In order to increase the quality of the metrics that
were defined, [22] introduces a set of properties complexity
metrics should fulfill. However, it can be observed that the
availability of design assessment metrics for object-oriented
systems (eg. [5]) was hardly extended over the “object-
oriented decade” although some of these metrics have been
identified to be also applicable in a service-oriented setting.
The concept of maintainability as defined by the ISO stan-
dard 9126 in [10] is narrowed in [1] to the concept of “mod-
ifiability”. This is achieved by excluding bug-fixing and re-
lated activities. Modifiability of a software system is [...]
the ease with which it can be modified to changes in the en-
vironment, requirements or functional specification” [1, p.
2]. The concept of modifiability is crucial to the findings of
this paper.

The authors of [19] approach an evaluation model for
service-oriented systems. It is argued, that quantitative
metrics for the maintainability of service-oriented systems
would be required. However, they do not provide such

quantitative tools yet.

In [20], for instance, it is argued that coupling and cohesion
are meaningful concepts in service-oriented systems. As
the article merely motivates to apply object-oriented met-
rics to SOA, no special metrics for service-oriented systems
are defined.

An example of the definition and application of specialized
metrics in the area of service-oriented computing can be
found in [17]. Types of granularity for single services are
introduced as well as metrics for measuring them. How-
ever, these metrics are focused on the analysis of single ser-
vices and not complete systems. In contrast, [21] proposes
a system-wide metrics. It applies the concept of coupling to
complete component-oriented systems.

While the application of metrics to service-oriented systems
is sufficiently motivated (eg. by [17], [19] and [20]), the
lack of accepted special metrics might be due to both, the
little information provided by their application and the com-
plex way to measure them. A set of objective metrics can
support organizations approach SO, though.

This paper builds on-top of the work that was done for
object-oriented systems and applies it to SO in order to al-
low for an objective design approach. This is achieved by
solely considering properties of services that are available
from an outside-view on services and proposing a multi-
tude of related metrics with descriptions of their interpreta-
tion. Additionally, a new class of metrics is proposed that
address the control-centralization concept of SO. While the
concept is largely described (eg., by [7] and [12]), the pre-
sented metrics are the first approach toward an objective de-
scription of this principle that is known to the authors.

All of those metrics are complementary to any of the ap-
proaches that aim at calculating business values, such as
the return-on-investment, for service-oriented systems (eg.

[13D).

3 Increasing Modifiability with Service Ori-
entation

According to [11], maintainability is the most impor-
tant quality characteristic when it comes to component-
based software development. Being an evolution of the
component-based approach (cf. [4]) that adds "soft” design
principles (cf. [6]), it can be argued that SO is suitable for
increasing a system’s modifiability (that is a subset of main-
tainability). According to [2] and [14], increasing modifia-
bility means to address and reduce complexity.

Another concept for improving the modifiability of a soft-
ware system is to define an explicit, centralized control
model (cf. [7]). One way to incorporate this idea into com-
posite applications is the concept of Business Process In-
tegration Oriented Application Integration (BPIOAI) intro-
duced by Linthicum in [12]. This concept centralizes the

control model outside the participating application systems
and uses business processes as the central control instance
over distributed functionality. This functionality can be ex-
posed by the means of services that have a formally de-
scribed interface (cf. [12]).

Papazouglou [16] described that SOA allows for business
process-centered control over distributed services by intro-
ducing process-centered service aggregation — so-called ser-
vice orchestration. The latter is introduced as a part of a
service-oriented architecture. It is a mechanism for aggre-
gating basic services to more specialized services (cf. [16]).
Thanks to the proposed aggregation of services, another
possible benefit for the application of SOA within an in-
dustry context can be identified: Required changes for
functional enhancement could be realized as additional ser-
vices that are aggregated together with services that expose
standard functionality of commercial-off-the-shelf-software
(COTYS). Such aggregators could provide the required func-
tionality which is offered by separate systems. This way
SOA could also contribute to keeping COTS unmodified —
which is a major aspect of today’s IT governance.

As a quality attribute, modifiability is a subjective, non-
functional attribute of composite applications. In order to
give organizations and projects a more objectified approach
to the modifiability assessment of composite applications,
the ideas of service aggregation and control centralization
are the basis for the definition of the modifiability metrics
that are presented in the next section.

4 Metrics

In this section the necessary basics for the definition and
analysis for service-oriented system design metrics are in-
troduced first. Besides the notion of basic definitions, so-
called desiderata are introduced. The presented properties
of size and coupling metrics are cited from prior work that
was conducted in the nineties for object-oriented systems.
Based on these basics five new metrics are introduced and
discussed. Additionally one metric for component-oriented
systems is cited and included in the presented canon of met-
rics. In total, two metrics for the assessment of a system’s
complexity and four metrics for measuring the addressing
of complexity are discussed.

4.1 Desiderata for Complexity Metrics

This subsection cites properties that size and coupling met-
rics should satisfy. Additionally, the formal notation that is
used for the analysis of these properties is introduced.

In [3], Briand and Basili define a modular system 2 as a
triple Q =< E,Q.R,M >. FE denotes the set of all ele-
ments of the system. Q.U C F is the set of all service types
in a given system). Q2.R C Q.U x Q. ¥ denotes the calling

relations among these services. M is an arbitrary collection
of disjoint modules of 2 that include all of a system’s el-
ements. OuterR(m) denotes the inter-module relations a
given module m € M is involved in. (cf. [3, p. 70]).

Desiderata for Size Metrics Based on this defini-
tion, [3, p. 71] describes six properties a size metric x(2)
for a system {2 should satisfy (desiderata):

Size.I demands that a size metric should satisfy
non-negativity. It demands that a size metric is not
negative.

Size. IT is the null value property: Q = () = x(Q) = 0.

Size.IITI is the module additivity property that de-
scribes that the size of a system should be equal to the
sum of the size of all its modules.

Size.IV demands that the size of a system {2 can be
determined by the knowledge of the size of its disjoint
parts. Size.IVisaconsequence of Size.IIT.

Size.V is the monotonicity property. It demands that
the value of a size metric must not be decreased if
an additional module is added. Monotonicity follows
from the properties Size.I - Size.III.

Size.VI ”“From the above properties, Size.I -
Size.III, it follows that the size of a system
[=< E,Q.R, M >]is not greater than the sum of
the size of any pair of its modules. [...]” [3, p. 71].

Desiderata for Coupling Metrics The same authors
use the definitions given so far, to propose five properties
(desiderata) to which a coupling metric for a modular
system should comply to [3, pp. 78-79].

Coupling.I is non-negativity that demands that a
coupling metric shall be zero or greater.

Coupling.II demands that the coupling for a system
without connections among its modules shall be zero.

Coupling.III is the monotonicity property. It de-
scribes that a new relation between modules does not
decrease the coupling

Coupling.IV demands that a merger of arbitrary
modules should decrease or not effect the coupling
value.

Coupling.V is a property that describes the merging of
unrelated modules in a system. It describes a (modu-
lar) system obtained by merging two non-interacting
modules as being as complex as the initial system.
For the context of service-oriented systems this is
interpreted as two services with disjoint methods that
are merged together into one bigger service.

4.2 Basic Measures

The basic measures that are introduced here are used in the
more complex metrics for complexity and complexity han-
dling measurement. Each measurement attribute is identi-
fied with its value range as well as the means to capture it.
A discussion part relates it to its impact and later usage.

Number of Services (NS) NS(Q) = |Q.9].
Mechanism NS is a simple count of all services in a sys-
tem. It is a size metric that only considers the pure count of
services in a system.

Value range V.S is limited to the range of [0, +-00[
Discussion V.S is a simple first measure of a system’s com-
plexity: The more services are meant to be used in a system,
the more complex (and less modifiable) the system might
be. In its simplicity, V.S is a basic measure that can be used
within other measures and metrics — for complexity metrics
and metrics for other characteristics. It is also suitable to
weight values of more complex metrics as it provides the
context in which these metrics should be analyzed.

N S satisfies the properties Size.I -Size.VI

Service Consumers (SC) €.C' is the set of all service
types that consume (operations of) service providers in a
system Q. SC(Q2) = |Q.C|; Q.C C Q.T.

Mechanism SC is a simple count of all service consumers
in a system.

Value range SC is limited to the range of [0, +o0]
Discussion As NS, SC' is a basic measure that is used in
more complex metrics and denotes the number of service
consumers in a system. It satisfies the properties Size.I -
Size.VI.

Service Providers (SP) 2. P is the set of all service types
in a system (2 that expose operations that are consumed by
service consumers. SP(Q) = [0.P|; Q.P C Q.U
Mechanism SP is a simple count of all service providers
in a system.

Value range S P is limited to the range of [0, +o0|
Discussion As NS, SP is a basic measure that is used in
more complex metrics. It satisfies the properties Size.I -
Size.VI.

Service Aggregators (SA) 2.A is the set of all service
types in a system €2 that both act as service provider and ser-
vice consumer. SA(Q) = |Q.A] with Q.A C Q.C,Q.A C
Q.POA=0CNAQ.P.

Mechanism S A is a simple count of all service aggrega-
tors in a system. Service aggregators are — as defined by
the service-oriented architectural style — sub-types of both
service providers and service consumers.

Value range S A is limited to the range of [0, +oo|
Discussion As NS, SA is a basic measure that is used in
more complex metrics. The fact that the sets of consumers

and providers overlap in the set of all aggregators is an inter-
esting mechanism that is used in some more complex met-
rics. The S A value is the most interesting value of the basic
metrics as it slightly indicates how a systems complexity is
made up and addressed.

S A satisfies the properties Size.I - Size.VI.

Coupling of Service (cos) Two components are ”coupled
if and only if at least one of them acts upon the other” [5,
p- 4]. As a service-oriented principle, services should be
”loosely coupled” (cf. [6]). Services solely expose opera-
tions for interaction with other services. Hence, the Cou-
pling Between Object Classes metric (CBO) as defined in
[5] is applicable for services as well. This metric is defined
as ”’a count of the number of other classes to which it is cou-
pled” [5, p. 11]. Transferred to services that means that cos
is defined as the count of services a given service calls op-
erations on. cos is a function of a given service. We denote
the cos of a service s € U as:

cos(s) = [{Q.5} x Q. Y|

Mechanism Being a simple count (and not a coupling met-
ric), cos(s) is a basic indicator for the complexity of a single
service. As services encapsulate their variables, in order to
calculate cos(s) it is only checked whether a service uses
operations of another service. If so, the value is increased
by one. How many operations a service is actually using is
not considered.

Value range [0, +o0]

Discussion Still treating a service as a black-box, cal-
culating cos(s) requires some sort of insight into the
mechanisms of a given service. This will be possible to
analyze as this needs to be documented for COTS-based
services, too. An absolute high value will indicate that
the given service depends on many other services. The
impact on modifiability depends on the actual class of
service that is analyzed. High values for (sole) service
consumers might indicate a low modifiability while high
values for aggregators might indicate the opposite. Note
that cos(p) = 0 holds true for a (sole) service provider p.

Inter-Service Coupling (\) Let p.II be the set of all re-
ceiveCall-ports of a service provider p. The function 7
shall be the count of receiveCall-ports of a service provider:
m(p) = |pIIJ.!

Let c.I" be the set of all serviceCall-ports of a service con-
sumer. The function « shall be the count of serviceCall-
ports of a service consumer c: y(c) = |c.I'|.2

Let 2.A be the set of all channels between receiveCall-ports
and serviceCall-ports in a system 2: Q.A C ¢.I' x p.I1. The

! As a size measure 7 satisfies the properties Size.I-Size.VI
2 As a size measure +y satisfies the properties Size.I-Size.VI

function) is then defined as the cardinality of Q.A:
Ae,p) = |e.T x pII|

Mechanism (¢, p) is the count of channels between the
two services cand p. ¢ € Q.C and p € Q2. P.

Value range The value range of A is [0, +-00[

Discussion) is equivalent to the C'BO metric as defined
in [5]. Therefore it satisfies the same properties — including
monotonicity.

4.3 Coupling as a Measure for Complexity

According to [21], the coupling of a system is an indicator
for its complexity. This becomes also visible by analyzing
the metric properties of [3]. There, coupling and complex-
ity metrics only differ in terms of the symmetry property
that is defined for complexity but not for coupling metrics.
The concept of symmetry addresses the conventions that are
used to describe a system.

Service Coupling Factor (SC'F') In [21], Washizaki et
al. have defined a complexity metric called Component
Coupling Factor (CCOF)). As discussed in the introduc-
tion, component-orientation and SO are similar architec-
tural styles. Thus, the CCOF complexity measure can also
indicate the complexity of a service-oriented system. Us-
ing the notation used in this chapter, we define the Service
Coupling Factor (SC'F’) in complete analogy with CCOF
as defined in [21]:

Z cos(c)

_ ceNC
~ NS(Q)2 - NS(Q)

SCF () | NS(Q) > 2
Mechanism In order to indicate the overall coupling of a
given system, the sum over all single cos-values of a sys-
tem’s service consumers is set in relation with the maximum
couplings that could occur in a system.

Value range SC'F is limited to the range of [0, 1]. As by the
definition of the service-oriented style, a service consumer
needs to be coupled with at least one service provider, 0 will
never be seen for service-oriented systems.

Discussion SC'F' is a metric designed for component-
oriented systems that we apply to service-oriented systems,
too. Consequently, this metric cannot incorporate service-
oriented principles.

As discussed in [21], CCOF (and therefore SCF, too)
satisfies the properties coupling.I - coupling.IV.
Hence, it satisfies the “merging of modules” and “mono-
tonicity”. This is because it does not include the notion of
service aggregators.

Relatively low SC'F values imply a loosely coupled system
while high values indicate a dense coupling in a system.
SCF can indicate how much the complexity of a system

influences its modifiability.
Figure 1 shows some topologies and the corresponding
SC F-values.

I Consumer
= Consumer = Consumer
<! Provider ! Provider
= Provider ! Provider
SCF(Q,) = 0.3 SCF();) = 0.25

Figure 1. Examples of SCF Values

System’s Service Coupling (SSC) SSC measures the
degree of coupling in a given system {2 with regards to its
modifiability. It is defined as:

Z cos(c)

ceN.C
SSCEY = SC(Q) x SP(Q)
Mechanism In order to indicate the overall coupling of a
given system, the sum over all single cos-values of a sys-
tem’s service consumers is set in relation with the maxi-
mum couplings that could occur in a system if no aggrega-
tors were used at all.
If service aggregators occur in a system (2, they increase
both SP(Q)) and SC(). This mechanism increases the de-
nominator and therefore decreases the value of SSC when-
ever service aggregators are deployed in a system. This
is because aggregators are considered to help decrease the
overall coupling of services in a system.
Value range SSC is limited to the range of [0, 1]. As a ser-
vice consumer needs to be coupled with at least one service
provider, 0 will never be seen for service-oriented systems,
though.
Discussion The SSC value indicates to which extent ser-
vices of a system are cross-linked. The fact that — by def-
inition of the service-oriented architectural style — services
need call each other, a SSC value of 0 is not reasonable.
If a system gets a relatively high SSSC' value this is an in-
dication that a lot of interaction without mediation between
services takes place. As aggregators automatically decrease
the SSC value, a value close to 1 will indicate that a sys-
tem is hard to modify as it is very complex and not medi-
ated. If a medium value is reached, other indicators should
be considered in order to asses the modifiability. This is be-
cause systems with a certain level of functionality will need
a certain level of coupling, too. Low S'SC' values indicate a
loosely coupled system. Such systems are considered to be
better modifiable than more coupled systems.
Whenever a system possesses a high coupling in terms
of the SC'F' value while the SSC value indicates a low
coupling, the system’s designer obviously tries to address
the high coupling by service-oriented principles. However,
whether or not this is beneficial is not indicated by these two
measures. In such cases other metrics that assess the quality

| SC(Q2),SP(Q) =21

of aggregation should also be considered.
Figure 2 shows some topologies and the corresponding
SSC-values.

% Consumer
“ Consumer “ Consumer
“! Provider ~ Provider
<! Provider “! Provider
8sc(fl) =1 SSC(f) = 0.5

Figure 2. Examples of SSC Values

In order to analyze the presented coupling metric SSC, we
consider methods of services as the element of a system, re-
lations among these methods as calling relations (irrespec-
tive of any communication semantics) and services as mod-
ules that group together sets of methods. This definition
fulfills the given definition of element, relation, module and
system.
SSC satisfies the following desiderata for coupling metrics:
Coupling.I: As neither cos(m) nor SC(£2) nor SP(Q)
can be negative, SSC obviously satisfies Coupling.I.
Coupling.II: As (V¢ € Q | cos(c) = 0) =
(85C(92) =0), SSC satisfies Coupling.II.
Coupling.III: Measuring coupling as described
by the SSC metric, R — OuterR(m) = { holds
true. This is because internal calling relations of a sin-
gle service are not considered. As cos simply counts
method calls and additionally simplifies it in a way that
all methods a service s calls at another service p can
only contribute to the cos-value by 1, the demand that
OuterR(MS’") C OuterR(MS") has the effect that
oo e argr €os(m') <30 o prgn cos(m”).?
Another case to consider is the fact that an additional
relation can turn a service consumer (or provider) into
a service aggregator. The new relation would always
increase the cos value for one service, hence increase
> m e ag €os(m) by 1. On the other hand the new service
aggregator would increase SC(Q2) x SP(f2) by SC(Q)
(or SC(£2), depending on what service is changes). As
SC(Q) > 1and SP(Q2) > 1, SSC could be decreased if a
channel turns a provider into an aggregator (or vice versa):
a=7.cac cos(c), b=5C(Q)x SP()

T = H%it‘l(ﬁ); ab+a x SC(Q) > ab+ b;SC(Q2) > 3
5C(Q)xSP(Q)

2. cos(c)
consumers are deployed in a system, turning a provider into

an aggregator does not increase the complexity of a system.
Hence, there are circumstances under which SSC' does not
satisfy Coupling.III. As the aim of the metric is to in-
troduce the idea of service aggregators as coupling-reducing
mechanism, monotonicity can not be satisfied by SSC.

Coupling.V SSC does not satisfy Coupling.V. This
is because the merger of two (unrelated) services could even

This means, as soon as more than service

3The values might be equal if another relation between two already
coupled services is added.

increase the S'SC value for a system (what is also a viola-
tion of Coupling. IV that demands that a merger of ar-
bitrary modules should decrease or not effect the coupling
value (cf. [3, p. 78f.])):

By not superseding channels with the merge of services it is
possible that

S e ars COS(m) = Y ¢y cos(m”) while
SC(Q) x SP(Q) is decreased. In these cases the SSC-
value is increased (as), o g/ cos(m’) < SC(MS’) x
SP(MS")). Thus, merging services only improves (de-
creases) the SSC' value of a system, whenever (bi-
directional) relations between services can be spared, too.
There also exists a trade-off, in that transforming aggrega-
tors into sole providers is considered negative since it results
in higher SSC values.

If SSC would be the only rule by which a system is de-
signed, the design would lead to a decentralized and dis-
tributed system with numerous services that do not interact
heavily and are mediated by aggregators.

SSC violates (under certain conditions) Coupling.III
- Coupling.V. As SSC incorporates the concept of ag-
gregators as a mechanism to decrease complexity and in-
crease modifiability, the aim of SSC is to reward the use of
aggregators. Thus, SSC' supports loosely coupled services
that are mediated, and are therefore easier to modify than
bigger services — even if it does not satisfy all the desiderata
for object-oriented coupling metrics.

In order to assess the coupling regardless of service ag-
gregators, SC'F' should be considered, too. Both metrics
can indicate how heavily services of a system interact and
whether mediators are used or not. Especially if SA() re-
sults in a relatively high value, other metrics (eg. SC'F' and
other complexity handling metrics that are introduced in the
next section) should also be considered.

4.4 Addressing & Measuring Complexity

Extent of Aggregation (FOA) There are two metrics
that indicate the degree of a system’s aggregation. The first
measure is the Extent of Aggregation (EOA):

> Aea)
Z a € NA

ce {Q.C\Q.A} Z Ale,p)
p € QP

EOA(Q) =

Mechanism EOA relates the count of channels between
non-aggregative consumers and aggregators with the over-
all count of channels from non-aggregative consumers to
arbitrary service providers.

Value range The value range of FOA is [0, 1].

Discussion EOA describes the extent of hierarchy in the
system: The ratio between the count of channels that are
mediated by aggregators and the total count of channels

from sole service consumers to all service providers. Low
values indicate arbitrary channels among a system’s compo-
nents while relatively high values indicate a high degree of
aggregation. Usually, a higher degree of aggregation is bet-
ter as it indicates that complexity is addressed. The FOA
value of a system should be looked at with the knowledge
of SSC values as well as the knowledge of the absolute
counts of the different service types as these values indicate
how much complexity a system needs to deal with. Impor-
tant to note is that EOA relies on a system heavily using
consumers. If an application is solely triggered by a ser-
vice consumer, the result might not be representative for the
complete system.

Figure 3 shows some topologies and the corresponding
EO A-values.

=1 ¢ Lal Ll
I Provider = Provider “ Provider <! Provider
EOA(Q,) = 0.143
“1 Consumer = c er 1 C
| =1 Aggregator |
<! Provider <! Provider ! Provider <! Provider
EOA(Q,) = 1

Figure 3. Examples of EO A Values
System’s CentraliZation (SCZ) SCZ describes to

what extent a system is centralized. Control centralization
is seen as a task for service aggregators.

K(Q2) = 0.9 x (SC(Q) — SA(Q)) — (SA(Q) — 1)

ZQC cos(c ZQA cos(a)) — k(Q)
SC _ c e (). a €
7 > (cos(c)) + (SA(Q) —1)?
ceQC

Mechanism The basic mechanism of SCZ is to set the ex-
tent of a system’s consumers’ coupling less the coupling of
the aggregators in relation with the overall consumers’ cou-
pling. The more the aggregators are coupled, the smaller
the value gets. Hence, SC'Z converges to a value of 1. In
order to capture the fact that a service consumer is always
coupled with one service provider, the amount of (sole) ser-
vice consumers is deducted from the denominator. As the
use of multiple service consumers is a slight indicator for a
de-centralized system, the number of consumers is not de-
ducted completely from the count of service consumers. As
the excessive use of (i.e., more than one) service aggrega-
tors is contrary to the idea of centralization, a ’punishment”
for the excessive use of aggregators is also included. This
is reflected by the use of the supporting function «.

Value range The value range of SCZ is |0, 1].

Discussion SC'Z addresses the need for control centraliza-
tion in a system that (re-) uses existing parts.

A high value of SCZ indicates that a system uses central-
ized components. With regards to modifiability, a higher
SC Z-value is better than a lower. Important to note is that
a high value might be caused by central aggregators but can
also be caused by single, central (sole) service providers.
This is why the SC'Z value for a system can also be high if
a system is centralized without control centralization. This
can be the case if multiple service consumers use one sin-
gle service provider. Even if the control is completely de-
centralized, this case leads to a high SCZ value. This is
acceptable since such a hub-and-spoke architecture is also
easy to modify (and of course, the system has a central com-
ponent).

Using multiple centralization components decreases the
SCZ value. This is why service aggregators should not
be deployed exhaustively. This is especially true for multi-
purpose services that act both as consumer and provider
without explicit control purposes. This is why the metric
includes a “punishment” for the excessive use of aggrega-
tors.

A SCZ value close to 1 indicates a high degree of cen-
tralization. With regards to an optimal modifiability, such
a very high centralization might not be the optimal design
for any system, though. This is because a highly complex
system that is controlled from one instance might lead to
an over-complex, and therefore not modifiable, central con-
trol instance. In these cases, a less centralized system might
be advantageous. Hence, there is a trade-off between com-
plexity and centralization. This is why the SC'Z value of
a system should be looked at with the knowledge of SSC
and SCF values as well as the knowledge of the absolute
counts of the different service types.

Also important to remember is that the metric is based on
the assumption that an aggregator centralizes the control of
a system. This might not always be the case. Whenever
an application uses aggregators in order to adapt to external
services, aggregators might be used extensively while the
control is centralized in one component. In such cases, the
SCZ value can be misleading.

Figure 4 shows some topologies and the corresponding
SC Z-values.

%] Consumer %l Consumer *] Consumer

“1 Provider “1 Provider “1 Provider 1 Provider

SCZ(Qy) = 0.3

1 C 1 ¢ #] Consumer

*1 Aggregator

1 Provider 1 Provider “1 Provider 1 Provider

SCZ(Qy) = 0.943

Figure 4. Examples of SCZ Values

Density of Aggregation (DOA) Besides FOA, DOA is
the second indicator of a system’s degree of aggregation. It
indicates fo which extent the aggregation in a system com-
bines more basic services to more complex services:

_ o @)
DOA(Q) =) ;‘;Al (W(a) @ 2)

Mechanism DO A relates for each service aggregator the
count of serviceCall-ports to the overall count of the ser-
vice’s ports. The value range for this ratio is]0, 1]. A value
of > 0.5 for an aggregator indicates that it consumes more
ports than it provides. By multiplying it by 2 and calculat-
ing the logarithmic value for this result, such aggregators
get a low positive score. For aggregators that offer more
ports than they consume, a relatively high negative value is
the result.

Value range The value range of DOA is | — oo, +0o0].
Discussion By “punishing” the non-aggregative use of ag-
gregators with relatively high negative values while re-
warding” only low positive scores to “real” aggregators, an
overall positive value indicates proper use of aggregators.
The absolute value of this measure is irrelevant. Especially
in combination with the SC'Z the DO A value can indicate
whether centralization of a system goes along with a good
aggregation. Hence, for high SC'Z values, the DO A value
should be positive. If a negative DOA meets a high SCZ
value, a system might use improper centralization mecha-
nisms that decrease the level of modifiability.

Figure 5 shows some topologies and the corresponding
DO A-values.

“1 Consumer *1 Consumer

1 Aggregator

! Provider

DOA(Q;) = —0.405

1 Consumer “1 Consumer “1 Consumer
[“TAggregator |
= Provider ! Provider =!I Provider =/ Provider

DOA(f) = +0.134
Figure 5. Examples of DOA Values

Aggregator CentraliZation (ACZ) ACZ indicates the
degree of centralization in a system by considering the use
of mediating services. Mediators are identified by the sup-
porting measure AD.

. 7v(a) =
0 ifo < —————— <06
ADa) =14 " S r@) +@) © lae 2.4
1 otherwise
1 if SAQ) =1
ACZ(Q) = > AD(Q,a)
1 acea otherwise

SAQ)

Mechanism AC'Z combines the idea of control centraliza-
tion via aggregators and considers the actual density of an
aggregation. An aggregator that does not compose several
services is indicated by an Aggregator Density (AD) of 0.
AD incorporates the idea that no to little control is executed
if the density of an aggregation is low. Such an aggregator
is considered to be a mediator. If services that consume one
service and also act as service providers should be seen as
service mediators, the AD measure needs to adjusted ac-

cordingly (#‘g(a) = 0.5).
By relating the count of non-mediators with the overall
count of service aggregators in a system the ratio of such
aggregators is calculated. By deducting this ratio from 1
the degree of centralization into non-mediators is indicated.
Value range The value range of AC'Z is [0, 1].

Discussion ACZ can be used as a measure to interpret
SCZ values. SC'Z describes to which degree a system me-
diates service calls and interprets the use of few aggregators
as a centralization. Without considering the internals of an
actual aggregator, this can be a misleading interpretation.
As the analysis of component internals is considered to be
hardly applicable in real-life settings, the interpretation of
the internals is supported by the AC'Z metric. The ACZ
metric incorporates the assumption that control can only be
exercised by a service aggregator whose count of receive-
Call-ports is disparate from the count of serviceCall-ports.

Values close to 1 indicate a high degree of centralization
while values close to 0 indicate a low degree of centraliza-
tion in a system. A complete centralization in terms of a
AC Z-value of 1 can only occur if only one aggregator is
used or only mediators are used. In real-life settings this
unlikely to occur.

ACZ is valuable for the interpretation of the results of the
SCZ metric for a given system: If a system’s design scores
a relatively low SCZ-value, a high ACZ-value indicates
that the mediators are used in the design of the system and
that the design incorporates the idea of control centraliza-
tions. However, if both the AC'Z and the SCZ values are
low, the system does not follow a centralized control model.
Of course, this metric has also to be carefully applied. This
is because it also solely puts an interpretation of an exter-
nally visible structure over the actual internal structure of
a component that determines the visible part. In conjunc-
tion with the SCZ, DOA and EO A values it is considered
valuable, though.

Figure 6 shows some topologies and the corresponding
ACZ-values.

5 Interpreting the Metrics

All metrics that were described in the previous section in-
dicate the modifiability of a system — some as indicators
for high modifiability, some as indicators of low modifiabil-

1 Consumer
Aggregator
“Aggregator " Aggregator “TAggregator
“ Provider “! Provider “! Provider
ACZ(9,) = 0.75
*l Consumer
I Aggregator |
[T Aggregator | [T =T Aggregator |
*| Provider “1 Provider *1 Provider

ACZ(2,) = 0.25

Figure 6. Examples of ACZ Values

ity. An optimal mechanism would be to identify a boolean
discriminant function (B D F') with according thresholds for
the single metrics in order to determine the modifiability of
a system that realizes the analyzed design (as described sim-
ilar in [18]). This approach has two problems. Realizing a
significant application that goes beyond scientific prototyp-
ing is cost intensive. This is why the first issue is to get
relevant data for running regression tests. A second issue
is the required categorization of systems into ’easy to mod-
ify” and "hardly modifiable”. We do not consider such a
fragmentation feasible, as it will heavily reflect subjective
parameters. This is why an aggregated discrimination func-
tion that forecasts the modifiability of a system is consid-
ered unrealistic.

[Services of the SD Creation Composite

[l o =
eventing system : Eventing Sys«gv caordination(es1) : DefineTemplateCoordinatior
—<
. =] =
(LT T il serviceorchestration : ServiceOrchestratior —¢
SAMS : CRM
ol
? T
o dinafion(<s2) : creat Fil
ortal - Portal cosrdination(es2) : createFul
P —o 51
) g
coordination(es3) : appraveFul coordination(sad) createOffer
¢
FulValidity : DecisionSve —o =]

=
= Mediated BOSS : ERP

Figure 7. Services and Relations

We believe that the introduced metrics can be better used to
highlight certain aspects for service-oriented design prin-
ciples and their impact on modifiability. This is why a
qualitative description of inter-relations among the metrics
is considered better applicable than a quantitative discrimi-
nant function. As a rule it can be stated that if the metrics
give a “bad” picture of a design, a redesign is appropriate.
If the picture is “good”, the design can still be suboptimal.

Application (£2) H NS SC SP SA ‘ SsC ‘ SCF

SD Creation H 11 8

11 8 | 0156 | 0.109

Table 1. Complexity Metrics for the Example Composite Application

They are a necessary indicator but not sufficient indicators
of design quality. For the sake of demonstrating their appli-
cability, the following case study shows the metrics in the
context of real-life requirements.

5.1 A Case Study

The case study to which the above metrics are applied is a
composite application that was designed (and realized) as
part of a project in the context of an industry company. The
design that was made based on the to-be implemented busi-
ness process was aligned with a reference architecture for
composite applications (cf. [9]). The design of the applica-
tion is described in [8].

The business process that is (semi-) automated by the com-
posite application describes the procedure how the company
reacts on customer demands by estimating the efforts the
realization of a request might cause and providing an of-
fer to the customer. In the overall process there exists an
extract that is concerned with creating an offer for a given
demand. The ”service description” (SD) is a document that
is used to describe a solution that is offered in response to
a demand. An SD accompanies an offer and delineates the
offered services, contains (among others) a functional de-
scription of the solution and indicates the service-level of
the offered services. This description needs to be aligned
with the service portfolio the company offers. Only ser-
vices that are officially included in the company’s portfolio
can be proposed. A SD is the base for a cost calculation for
the respective solution. Based on the estimated cost, prices
are made and an offer, that includes a SD as well as the cal-
culated prices, is sent to the customer.

A rough overview of the composite application’s design is
summarized in the component diagram in figure 7. In this
diagram, services are modeled as components. Service con-
sumers have required interfaces while service providers of-
fer provided interfaces. Service aggregators have both types
of interfaces.

In order to describe the complexity of the composite appli-
cation for the SD creation process, the complexity metrics
are applied to the composite application. The results of this
analysis are shown in table 1.

The analysis shows that the complexity metrics SSC' and
SCF produce low values. This means that the overall com-
plexity (by the notion of coupling) of the composite appli-
cation can be assumed to be relatively low. These values
solely indicate the coupling of the services. To get another
picture of the composite’s complexity, the count of the sin-
gle services should be considered, too.

In order to provide an overview of the behavior of the com-
plexity handling metrics, they are also described for the SD
creation composite.

Interesting to note is that the extent of aggregation is zero.
This is because no pure service consumers are part of the
system. This is also why the system’s centralization, as far
as the SC'Z is concerned, is relatively low.

Another reason for a relative low centralization value is that
the application services are mediated by service coordina-
tions with a low density. As the service coordinations do
not provide any control logic, the SCZ, that is only based
on the notion of aggregators, indicates a distributed control.
As discussed, should the SCZ value be considered in com-
bination with the SSC and SC'F values. As these values
indicate a low complexity, the little centralization in terms
of the SC'Z metric is acceptable.

The AC'Z metric indicates a relative high degree of central-
ization. This is because most of the aggregators are used as
mediators.

The density of aggregation (DO A) is positive. This means
that the aggregators access more service methods than what
they provide. Hence, the aggregation is sufficiently dense.
The values of the complexity handling metrics are shown in
table 2.

With regards to the metrics that describe the modifiability
of a system it can be summarized, that the overall picture
for the SD creation composite indicates an application with
overall low complexity that extensively uses (appropriate)
aggregators. On the one hand, the use of aggregators is a
sign of incorporating service-oriented principles. On the
other hand, the extensive use of aggregators endangers the
principle of control centralization in terms of the SC'Z met-
ric. The reason for the extensive use of aggregators is the
adaption of heterogeneous applications to a functional de-
scription of a business process. The fact that aggregators are
used as mediators is objectified by the relatively high ACZ
value for the scenario. This value indicates a high control
centralization within the aggregators. Expressed differently,
75% of the aggregators is used as mediators while the con-
trol is centralized in 25% of the composite application’s ag-
gregators. Seen from this point of view, the SD creation
composite centralizes the control on top of a heterogeneous
landscape. The overall picture that is provided by this anal-
ysis is that the composite applications will show a high de-
gree of modifiability if future requirements need to be re-
flected. This is why the metrics do not indicate the need for
a redesign.

Application () || SCZ FEOA DOA ACZ

SD Creation || 0.22

0

+04 0.75

Table 2. Complexity Handling Metrics for the Example Composite Application

6 Conclusion and Future Work

In this paper we have presented a set of metrics that can
support large organizations to objectively incorporate some
simple principles of SO into their application design. By us-
ing this tool, they can more easily leverage service-oriented
principles that are soft in comparison with hard principles
that are equivalent to the component-oriented architectural
style. These metrics are a contribution to the application
of the service-oriented architectural style in the context of
large organizations. They solely provide a necessary indi-
cation of design quality. They are not sufficient indicators,
though.

The metrics presented here are an initial proposal that
proved to be beneficial during an application in a first larger
real-life project. Especially as part of a design methodology
for composite applications, the metrics can help to identify a
poor design and motivate a re-engineering of a design prior
to realizing the application. However, the definition of the
metrics can only be a first step toward the objective appli-
cation of the service-oriented architectural style. As dis-
cussed in this paper, a boolean discriminant function with
fixed thresholds would be preferable but is considered to be
not achievable today.

It is required to apply the metrics in additional settings to
get a more objective base for their interpretation. This is
why we will continue to research the behavior and signifi-
cance of the presented metrics in more enterprise-scale case
studies.

References

[1] P. Bengtsson, N. H. Lassing, J. Bosch, and H. van Vliet.
Architecture-level modifiability analysis (ALMA). Journal
of Systems and Software, 69(1-2):129-147, 2004.

L. Bratthall and P. Runeson. A Taxonomy of Orthogonal

Properties of Software Architecture. Proc. 2nd Nordic Soft-

ware Architecture Workshop. Ronneby, Aug, 1999.

[3] L. C. Briand, S. Morasca, and V. R. Basili. Property-based

software engineering measurement. [EEE Trans. Softw.

Eng., 22(1):68-86, 1996.

H. Cervantes, L. Imag, and F. Hall. Technical Concepts of

Service Orientation. Service-Oriented Software System En-

gineering: Challenges and Practices. Idea Group Publish-

ing, 47, 2005.

[5] S.R. Chidamber and C. F. Kemerer. A metrics suite for ob-
ject oriented design. IEEE Trans. Software Eng., 20(6):476—
493, 1994.

[6] T. Erl. Servcie-Oriented Architecture, volume Fourth Print-
ing of The Prentice Hall service-oriented computing series.
Prentice Hall, Inc., Upper Saddle River, NJ USA, February
2006.

[2

—

4

—

(7]

(8]

(9]

(10]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis-
match or why it’s hard to build systems out of existing parts.
In ICSE, pages 179-185, 1995.

H. Hofmeister and G. Wirtz. Designing a platform-
independent use-case for a composite application using a
reference architecture. In Proceedings of the 19th Int. Conf.
on SW Eng. & Knwl. Eng. (SEKE’2007), Boston, MA, USA,
July 9-11, 2007, 2007.

H. Hofmeister and G. Wirtz. A multi-layered framework
for pattern-aided composite application design. In The 11th
World Multi-Conference on Systemics, Cybernetics and In-
formatics (WMSCI’2007), Orlando, FL; USA, volume 1,
pages 54-60, 2007.

ISO/IEC. Information technology — software product evalu-
ation. Technical report, International Organization of Stan-
dardisation and International Electrotechnical Commission,
2004.

K. Lee and S. J. Lee. A quantitative evaluation model using
the iso/iec 9126 quality model in the component based de-
velopment process. In ICCSA (4), volume 3983 of Lecture
Notes in Computer Science, pages 917-926, 2006.

D. S. Linthicum. Next Generation Application Integration.
Addison-Wesley, Boston, MA USA, 2004.

E. A. Marks and M. Bell. Service-Oriented Architecture
(SOA): A Planning and Implementation Guide for Business
and Technology. John Wiley & Sons, Inc., New York, NY,
USA, 2006.

T. J. McCabe. A complexity measure. [EEE Trans. Software
Eng., 2(4):308-320, 1976.

A. Nori and R. Jain. Composite applications: Process based
application development. In TES, volume 2444 of LNCS,
pages 48-53. Springer, 2002.

M. P. Papazoglou. Service-oriented computing: Concepts,
characteristics and directions. In WISE, pages 3—12. IEEE
Computer Society, 2003.

D. Rud, S. Mencke, A. Schmietendorf, and R. Dumke.
Granularititsmetriken fiir serviceorientierte Architekturen.
In DASMA Software Metrik Kongress (METRIKON’2007),
2007.

N. F. Schneidewind. Software metrics model for quality con-
trol. In IEEE METRICS, pages 127-136. IEEE Computer
Society, 1997.

M. Stutz and S. Aier. Vorgehensmodell zur fachlichen Bew-
ertung serviceorientierter Architekturen. In Multikonferenz
Wirtschaftsinformatik. GITO-Verlag, Berlin, 2008.

S. Vinoski. Old measures for new services. IEEE Internet
Computing, 9(6):72-74, 2005.

H. Washizaki, T. Nakagawa, Y. Saito, and Y. Fukazawa. A
coupling-based complexity metric for remote component-
based software systems toward maintainability estimation.
In APSEC 06 Proceedings, pages 79—86, Washington, DC,
USA, 2006. IEEE Computer Society.

E. J. Weyuker. Evaluating software complexity measures.
IEEE Trans. Softw. Eng., 14(9):1357-1365, 1988.

