Matchmaking: How similar is what I want to what I get

Michael Munz, Klaus Stein, Martin Sticht, and Ute Schmid®

University of Bamberg, Germany, WIAI, email: {name.surname} @uni-bamberg.de

Abstract. We introduce matchmaking as a specific setting for similarity assess-
ment. While in many domains similarity assessment is between pairs of entities
with equal status, this is not true for matchmaking in general. Usually, in match-
making there exists a source request which triggers search for the most similar
set of available entities. Whether an entity is acceptable depends highly on the
application domain. We describe a specific scenario where elderly people request
support or companionship for activities away from home. The focus is primarly
based on neighbourly help, like helping someone to carrying his or her shoppings,
finding someone else to enjoy a performance or simply for taking a walk around
the block. The scenario is used to formulate requirements for a matchmaking
framework and for the matchmaking service.

1 INTRODUCTION

Cognitive scientists consider similarity to play a crucial role in most cognitive processes
such as concept acquistion, categorization, reasoning, decision making, and problem
solving [1,2]. Major approaches to similarity in cognitive science as well as in artificial
intelligence can be characterized on two dimensions: First, whether basic information
about objects is metrical or categorial and second, whether objects are characterized by
feature vectors or structural information [1,3]. In psychology, the typical task under in-
vestigation is that subjects are asked to rate similarity of two objects. In this setting, the
entities for which similarity is assessed play equivalent roles and often occur as first or
second position during evaluation. Furthermore, entities are dissociated from the per-
son who does the rating. However, there are many scenarios, where similarity between
a “driver” entity and a series of candidates needs to be assessed. This type of similarity
assessment is to the core of information retrieval research and can be characterized by
the questions how similar is what I want to what I get?

In this paper we introduce matchmaking as a special domain of information re-
trieval. In general, matchmaking is the process of identifying similar or compatible
entities. Requirements stated as a query by a user are matched with descriptions (e.g.
of services or social events) provided by other users. Typically, a good match is obtained
by identifying features or constraints which are similar and — in addition — by features
or constraints which are complementary for request and candidate entities. Comple-
mentary or fitting features are defined by a request/provides relation.

There exists a wide range of application to matchmaking, such as (online) dating,
sports, eSports and business [4,5]. In those domains, the matching process is based on
different assumptions about what “similarity” means. In (online) dating a matchmaker
tries to bring together people with similar interests or similar personality. Whereas in

the area of sports a matchmaker has to consider the skills and competence of sportsmen
and of teams when it comes to a matching. In business, a matchmaker could have the
job of finding appropriate services for a request. Here, similarity depends on what kind
of service one is interested in. The examples are all from different domains, that means
finding something that is similar to a request depends on the domain of application.

The paper is organised as follows: first, we review three different approaches of
matchmaking applied to different domains. Then we present two different kinds of sce-
narios, where older people search support or compagnions for activities. The scenarios
are used to derive requirements for a matchmaking framework. In chapter 5 we present
the components of framework and conclude with a short discussion and future plans.
The focus of this paper is on the presentation of the system architecture (backend) by
which matchmaking can be realized. We are not concerned with the user interface
(frontend).

2 APPROACHES TO MATCHMAKING

In this section we discuss three existing approaches for matchmaking with respect to
four major questions:

1. How is the data (advertisements, queries) represented?
2. Does the approach make use of background knowledge?
3. Which matching algorithm is applied?

4. Which similarity or fitting measurement is used?

The described approaches are applied in different domains. The approaches [6] and
[7] are related to the business domain whereas [8] is related to dating and meeting
people. Furthermore, they have a different understanding of what actually similarity
means as previously discussed. It is this difference that drives the matchmaking process
in different directions.

2.1 Matching Resources With Semistructured Data

The classad matchmaking framework [6] is a centralized resource management system
for managing distributed resources. It allocates information, like availability, capacity,
constraints, and other attributes describing a resource. Those information are used in
the matchmaking process to find a proper match. The idea here is to use classads (classi-
fied advertisement), a semi-structured data model [9] comparable to records or frames,
to describe a resource request or to announce a resource to the system. Classads are
modelled via lists of pairs, each containing an attribute name and one or more values,
to store semi-structured data. Data pairs are used to describe offered and requested ser-
vices. For example, when considering to use a workstation, a requester would probably
store information about the CPU’s capabilities or the disk space, while a provider of-
fering a printing service would describe the printer’s throughput. It’s possible to define
constraints, restricted user groups and rules to rank each other. Both, service provider
and service requester use classad descriptions. This makes it easy to compare the query

with the suppliers’ offers, looking at similarities of attributes and constraints and to rank
the offers found in this process.

For a given request, the matchmaker tries to match the classad of the request to a
resource with respect to any constraints given in the classads. The rule-based process
evaluates expressions like other.memory >= self.memory. The authors focus on the data
structure and do not specify a specific matching algorithm. They state that the profiles
can be matched in “a general manner” using the specified constraints. Additionally, as
goodness criteria, the ranking rules can be applied to find out which classads fit better
than others. Unfortunately, further details are not given by the authors.

Finally, the matched entities will be informed by sending them the classads of each
other by the matchmaker and the resource provider decides to accept or decline the
given request.

2.2 Matching Activities Using Ontologies

R-U-In? [8] is a social network primarily based on activities and interests of users. A
user looking for company for an activity (e. g. going to the cinema or to a jazz club etc.)
queries system with a short description, including time and place. The matchmaker re-
turns contacts found by the user’s social network profile, who have similar interests and
are located in close proximity. The found contacts need not be known by the querying
user yet. For example, the new person might be a social-network “friend” of a “friend”
identified by some social network service.

Users can post their interests and planned activities on the platform in real-time, i .e.
planned activities are dynamic and can often change at the last minute. As a result of
this, participants in an activity get updates about changes immediately.

An ontology is used to realise the matching process. There are reasoning mecha-
nisms for ontologies based on Description Logic [10] and therefore for ontologies based
on OWL [11]. Banerjee et al. used an OWL-based context model for their activity-
oriented social network. Interests are provided by the user itself and are based on tags.
Each interest can be tagged via the dimensions location, category and time. In this way,
one can find similar interests by matching on all dimensions: the time (e.g. evening,
8pm, ...), the category (horror movie, skating, jazz, ...) and the location (Bamberg,
Jjazz-club).

Tags entered by the user (for describing or querying an activity) are considered as
concepts of the ontology. The matchmaker queries the context model which in return
gives a set of similar tags. Those tags are then matched with the tags specified in the
user profile. Based on the search criteria of a user, activities might match exactly or
just partially. The search result of any match is then ranked by its geographical distance
to the current location of the requesting user. Suppose, a user stores the activity (Park,
skating, 3 pm) and a second user searches for (skating, afternoon). While the activity
skating is an exact match, afternoon matches only partially with 3 pm. As afternoon
subsumes 3 pm it is still possible to match the activity.

In general, the ontology is used to store background knowledge by modelling con-
cepts and relations. For the presented prototype, this is done manually. After a query,
the matching process is performed in two steps. First, the context-model is used to get
semantically similar tags which are then compared to the tags of the other user’s activity

descriptions. However, details on how the tags are compared and matched and how the
results are ranked (beside of the geographical distance) are not discussed by the authors.

2.3 Matching Web Services Using Clustering

Fenza et al. [7] propose an agent-based system to match semantic web services. There
are two different kinds of agents in the system: a broker agent (kind of mediator) and
one or more advertiser agents. A request for a service is handled only by the broker it-
self. When it encounters a request it converts it into a fuzzy multiset [12] representation.
With these multisets a relevance degree is assigned to each possible ontology term that
describes a web service according to the place, where the term occurs. For example,
if the term occurs in the input specification of the service then it will get a relevance
degree of 1. If it occurs in the textual description, then it will get a degree of 0.3 and so
on. In this way, it is possible to weight the term for different occurrences via categories.

Advertiser agents interact with web services and with a single broker agent. Each
web service description' is converted into a fuzzy multiset representation. Note that
the broker does the same with the user’s request. So in the end, a broker has a fuzzy
multiset of a request and advertiser agents have a fuzzy multiset for each registered
service. The broker sends the fuzzy multiset of the request to the advertiser agents
to find an appropriate web service. If a web service matches with a request then the
matched web service is returned by the broker, the corresponding fuzzy multiset is
stored to a central cluster and its job is done. Otherwise, the broker tries to find an
approximate service by using a knowledge base which is divided into two distinct sets
of knowledge: static knowledge and dynamic knowledge.

There are several ontologies modelled to specific domains in the static part of the
background knowledge. To calculate an approximation, the broker modifies the original
request by utilizing the domain ontologies. The dynamic part of the knowledge con-
sists of the cluster of fuzzy multisets where the web service descriptions of the known
providers are stored (encoded as fuzzy multisets). It compares the fuzzy multiset of the
modified request with the fuzzy multiset of each cluster center and selects the services
most similar to the request. That is, services with the minimal distance to the request
are candidates for an approximation. The similarity is therefore measured using the
distances in the fuzzy cluster.

3 SCENARIO

Older people often don’t leave their home on their own, because of several factors:
they might be more anxious in late life or may have physical health problems. They
also might be more socially isolated, have significant changes in living arrangements,
the loss of mobility, fewer flexibility, and loss of their independance. All this factors
contribute to withdrawal from social life and thereby reduce quality of life.

To have an independent life at an old age mobility is crucial to being active and to
stay in contact with other people. Therefore, the goal is to improve mobility and social

! A specific ontology for describing web-services named OWL-S is used.

connections of (older) people. That is, to bring together people who do need help, but
also people who want to meet others and people who offer help.

The idea is to build a platform mainly based on collaborative help, but also in-
cludes service providers. In this paper we focus on the matchmaking framework of the
platform. The context of collaborative help means to match people asking for help to
people offering help and vice versa. People looking for help are going to be mostly
elderly people and people offering help are going to be mainly volunteers.

To improve mobility plus covering social aspects we have to distinguish between
two domains of interest the matchmaker has to deal with: mobility assistance and out-
door activities, see also figure 1. Matchmaking in those two domains is either accom-
plished by a best fit approach or by a similarity approach.

In a similarity approach the matchmaker tries to find related or similar content or
activities. This can be achieved for instance by defining topological similarity via on-
tologies.

In the best fit approach the machmaker tries to determine the best "help response’
to a "help request’. It is actually the contrary of similarity, because like the parts of
a puzzle, they fit into each other only, if they are the contrary. Similarity and best fit
approaches are discussed in more detail in sections 5.1 and 5.2.

3.1 Mobility Assistance

Mobility assistance tries to improve mobility of older people. Often, older peopler are
in the position of needing temporal help, for example when going to the supermarket,
going to the medical doctor, using public transportations, carrying shopings, going for
a walk around the block etc.. To improve mobility of those people the system can be
used to request assistance. Volunteers can then provide assistance and support in their
mobility. We call the relationship between seniors and volunteers in the domain of
mobility assistance asymmetric, because seniors depend on someone else (volunteer)
who can give support and help. Without the help of a volunteer a senior wouldn’t be
able to be as mobile as she likes to be or in the worst case couldn’t realise it at all.

In general, volunteers should be certified over some agency to guarentee they are
trustworthy and qualified to deal with the specific needs of older people. Screening and
training of volunteers implies some costs, seniors typically would be paying some small
fee to be registered at the agency.

Scenario 1 - mobility assistance: asymmetric relationship (a) Mrs. Peters is a 82 years
old lady who needs attendance in taking the public bus lines. She thinks it’s to compli-
cated for her, because she has to know how to buy a ticket, where to change bus lines,
and the bus stations to get off. (b) Lisa Gustafsson has an appointment at the medical
doctor on Wednesday at 12.15 pm. She has a zimmer frame and needs to use the public
bus to go to the doctor. (c) Aylia Ozdan is 61 and a volunteer. She is willing to help
someone else on Mondays, Thusdays, and Thursday from 11 am — 1 pm. (d) Mr. Weber
is a 58 years old invalidity pensioner. He has commited himself to work as a volunteer
and is usually available from Monday until Friday from 12 pm — 16 pm.

In the situations above there are some information explicitly and some implicitly
given. There are two people who have themselves commited to work as volunteers

and there are two older people who need assistance. Naturally, one would match the
help request of Lisa Gustafsson to Mr. Weber who is a volunteer. The time slot of Lisa
Gustaffson is fix, because she has an appointment at the medical doctor, but Mr. Weber’s
time slot as a volunteer matches in time and day. But the problem here is implicitly
given. Lisa Gustafsson is a woman who is going to the doctor and she might be embar-
rassed about getting assistance from a man. Of course, Lisa Gustafsson could explicitly
say she doesn’t want a man as an assistance. In that case, the best fit would be Aylia
Ozdan, even the time slot doesn’t fit.

The request of Mrs. Peters is more uncomplicated. She is affraid of taking the pub-
lic bus, but wheather a man or a woman can give her assistance in riding the bus is here
of no importance. Therefore, possible matches are both Aylia Ozdan and Mr. Weber,
because there is no more information given to constraint the matching.

3.2 Outdoor Activities

With outdoor activities not only the mobility of older people can be improved, but also
social life. Here the system can be used to do activities together with other people.
Seniors can search for other seniors who have similar interestes in activities. Note, in
doing outdoor activities are not necessarily volunteers needed. Instead, the focus lies
in meeting people around the same age and with similar interests. The relationship
between seniors participating in an activity is symmetric, because no one depends on
someone else to realize the activity. In the worst case, an activity could be done alone.

Scenario 2 - outdoor activity: symmetric relationship (a) Mr. Beck is 70 years old and
interested in walking. He has also done nordic walking in the past. None of his ac-
quaintances is interested in it, and he doesn’t know any other person who has the same
interestes. (b) Mrs. Novak is 73 years old and she likes all kinds of outdoor activities
and to be outside and enjoy the nature. (c) Mr. Miller, 81 years old, lives near a park.
He loves to go for a walk in the park. He has a walking stick.

In this scenario there are three older people who are looking for other activity part-
ners. When Mr. Beck searches for someone else who also likes walking, he finds that
Mr. Miller likes it as well, because both activities are similar. But the system could also
offer in the resulting list the activity of Mrs. Novak, because she likes to be in the nature
and doing all kinds of activities. She hasn’t given any more information to constraint
the search, but at a higher level all three activities are similar and match.

4 REQUIREMENTS

In chapter 3 we described two different kinds of scenarios where matchmaking is either
a best fit or a similarity match. From these scenarios various requirements arise which
have to be considered in a matchmaking framework.

Activities A matchmaking framework has to deal with different kinds of requests when
it comes to a matchmaking. The essence of scenario 1 is that someone is searching
for help and someone else is offering a helping hand. Here, a request for help and an

certified registered senior, senior
volunteer senior volunteer

Fig. 1. left: asymmetric. A helping situation is an asymmetric relationship. The older person
depends on someone who is willing to help, because she can’t do it on her own. right: symmetric.
The relationship of activities is symmetric. Involved parties are at an equal level, no one depends
on someone else to do the activity.

offer to help should be matched. In scenario 2 the situation is different. Users search
for other users with similar interests. Here, a matching service should match users with
same or similar interests. All requests have in common that they concern “activities”.
As a result, requests are essentially a search for activities. Therefore, one requirement
to a matching framework is to handle those activities properly.

While R-U-In? (Sec.?2.2) matches users with similar interests it does not handle
fitting of offers with requests. Classads (Sec.2.1), on the other hand, support these
different roles but only provides the data structure and no matching algorithm. The
fuzzy multiset approach (Sec.2.3) also supports the different roles of requester and
provider as long as all parameters can be expressed as fuzzy multisets.

Constraints Activities are essentially sets of constraints. We distinguish between hard
(“must”) and soft (“should”) constraints. If only one hard constraint can’t be satisfied
the whole activity won’t be satisfied at all, as it is the case in scenario 1 not wanting
a man as an assistance. If one soft constraint can’t be satisfied, the activity will still
be available as a possible match, as with Lisa Gustafsson and Aylia Ozdan. In the
context of matching similar activities, a soft constraint evaluated to false means matched
activities do not fit so well. Note, what is seen as hard and soft constraints depends
highly on user expectations. Scenario 2 (walking) is an example where a lot of soft
constraints exist: time, place, day of week, and even the activity itself (walking, nordic
walking, doing an outdoor activity). Whereas the examples of scenario 1 have a lot of
hard constraints, like time, place, bus line, gender, and day of week.

The classad approach supports modelling of constraints, but the authors do not dis-
tinguish between hard and soft constraints. To overcome this, one could think of util-
ising annotations to distinguish categorically between hard and soft constraints. Both
of the other approaches do not have explicit constraining mechanisms. The activity-
oriented network R-U-In? models interests of users via three dimensions: “time”, “cat-
egory”, and “location”. The model could be extended by an additional dimension spec-
ifying constraints. The downside of this approach is all dimensions of the model are
represented by an ontology. That means, only the concepts of hard and soft constraints
could be modelled, but no instances. Otherwise, constraints would be predefined and

too inflexible. The fuzzy multiset approach directly supports (weighted) matching of
soft constraints, but the datastructure has to be adapted to directly support hard con-
straints.

Roles The scenarios (Sec. 3) present two basic situations. On one hand there are people
needing help or searching for other people with same interests. On the other hand,
there are people offering their help. But there are differences in the degree of helping
someone. Some users do volunteering work and other users just do someone a favour.
In the context of neighbourly help it’s important to distinguish between these, because
there is a difference in the social commitment. Via user roles these differences can be
modelled. Roles can represent the different expectations users have, when searching for
activities. For example, users searching for help expect to find someone offering help.
The same is true vice versa. That is, a volunteer who is looking for users needing help
expects to find posted activites.

As already stated, the goal of the proposed framework is to improve social life of
older people by focusing on mutual assistance and neighbourly help. Therefore, the
role of seniors represents those users who are searching for help or looking for com-
pany. The difference in helping is taken into account by another two roles. That is,
volunteering work and doing favours are represented by separate roles, because they
have different characteristics. People doing volunteering jobs do it on a regular basis
and offer assistance explicitly. Usually, they have weaker conditions under which they
are willing to help and try to be more flexible in scheduling an appointment with some-
one who needs help. Furthermore, they are willing to spend some of their spare time in
helping others. Users doing favours don’t help out regularly and have stronger condi-
tions under which they are willing to help someone. Doing someone a favour is usually
a very time-limited act, so time is a hard constraint. Another characteristic of a favour
is most people will do it only, if it doesn’t interfere with their own plans and they don’t
have to change their schedules.

Classads and fuzzy multisets are designed to match available resources to requests
of resources. In those situations there exist only the two roles of service providers and
service requesters, and no further differentiation is needed. An activity-oriented social
platform like R-U-In? does only have one group of users. All users are interested in
doing activities in their spare time. This leads to clear expectations when using the
platform. They either search for or post activities. Because of an activity-oriented user
group only one role is needed to represent them.

Knowledge The matchmaking process can be improved by providing knowledge. For
matchmaking based on similarity different sources of knowledge are suitable. That is,
background knowledge and user profiles.

Background knowledge is the general knowledge available in the system. Activities
are represented by it and the knowledge is used to tell how similar different activities
are. Then, the matching service can offer similar activities by evaluating it (e. g. by
taxonomic relationships). Suppose, someone searches for nordic walking, but there is
no direct match (as the situation is in scenario 2). The matchmaking service can offer
activities similar to walking instead and ignore other available activities (e.g. playing
golf). Background knowledge has a disadvantage, though. It is often static and explicit.

It doesn’t change often and represents knowledge to a specific time. Moreover, updating
static knowledge is often time consuming. To overcome this we consider to utilise user
input. The initial background knowledge would be more dynamic and converge to
requested user activities.

A user profile is also helpful in the matching process. It has two advantages: first,
in the profile are those information stored a user normally doesn’t want to re-enter
everytime a search is submitted. Second, information stored in the profile can be used to
filter off matched activities which do not fit. In this way, the result list can be improved.
Information in the profile could be among other things: interests of a users, trust to other
users, constraints, and a user rating. Activities of other users should be withhold in the
result list, if a user marked others as disliked or even untrusted. Trust and user ratings
are really important in the context of neighbourly help and are valuable information in
the matching process. A matching will get a much more higher rating, if there already
exists a relationship of trust between users. The implication is, they did some activities
in the past, know each other and would like to do future activities together.

Classads [6] have in some extend a user profile, but they do not have any background
knowledge. In classads only a resource can specify a list of trusted and untrusted re-
questers, so the relationship here is unidirectional. The activity network R-U-In? [8]
uses both background knowledge and user profiles for a matching. While user profiles
are updated in real-time, the background knowledge has no dynamic update mechanism
so far. Moreovere, there exists a policy repository where a user can define policies for
participants when attending an activity. The downside of the platform is one can’t rate
users, can’t mark them as liked or unliked, and it’s not possible assigning any status
of trust. In the fuzzy multiset approach [7] there is a distinction between background
knowledge and fuzzy multisets. The background knowledge is realised in the form of
domain ontologies and is static, according to the paper [7]. Whereas, fuzzy multisets
are dynamic and are updated according to changes of services.

Requests The matching framework should be able to differentiate between two different
classes of requests, immediate request and stalled request. They represent different
searches of activities. Suppose, a user wants to do nordic walking and issues a search.
In the profile aren’t defined any preferences, like hard constraints. Further assume no
exact match is possible, but there are two other activites stored (walking and enjoying
nature), as the situation in scenario 2. As a result, the best matches are those two. The
user has now the choice of either choosing any of the matches he or she is interested
in by contacting the other person or to store the request in the system. A user should
have the opportunity to store it, if he or she doesn’t like any of the activities found or
the results are not as expected

Everytime a user initiates a new search for activities to the system he or she imme-
diately receives all matching results best fitting the search. It is an immediate request.
The result list is ordered according to a weighting so the best fitting activities are on
top. In case, the user isn’t happy about the found matching results, he or she has the
opportunity to initiate a stalled request. The request of the user is stored in the sys-
tem’s activity database and is from now on in monitoring modus. Depending on the
preferences stored in the corresponding user profile the user will be notified about new
activities of other users similar to his or her activity request. Utilising a stalled request

one can find a match that best fits over a period of time while an immediate request
matches the best fit of the current available activities.

Classads [6] and the fuzzy multiset approach [7] match a request to the current
available set of services, only. They do not have to distinguish between different kinds
of requests in their systems. Whereas, in R-U-In? [8] you can search for and post
activities. Activities are stored in a so-called activity groups reposititory. The difference
here is, stored activities are not in any monitoring mode, so users are not being informed
about searches of other users. Rather, in R-U-In? a user will only be informed, if the
requester is interested explicitly in an activity by sending him or her a message.

For the proposed system based on neighbourly help the described requirements are
mandatory to the process of matchmaking. Because none of the approaches is appro-
priate for our needs we propose a matching framework with the required components.

5 COMPONENTS OF A MATCHMAKING FRAMEWORK

We introduce a framework with respect to the requirements identified in chapter 4. Fig-
ure 2 depicts all components of the proposed matchmaking framework. It shows the
interaction between the components, in which the matchmaker is the key component.
A user searching for activities initiates a request to the system. All interaction between
a user and the system is via a mediator. The mediator decides whether it is an imme-
diate request or a stalled request. If it’s an immediate request the matchmaker will be
called. For finding similar activities or activities which fit to a given request the match-
ing algorithm uses the underlying databases. That is, the background knowledge, the
user profiles and the stored activities. A result list is then returned in response to the
mediator. If the request is a stalled request an activity will be created in the activities
database. There are two things to be aware of: first, the activity is in a monitoring mode.
Second, a stalled request can only follow up on an immediate request. Whenever there
is a new match for a stalled request the user will be informed.

5.1 Representing Constraints

Descriptions of activities as those mentioned in chapter 3 consist of features, such as
gender, time, location, and the name of the activity itself. These features describing an
activity are viewed as constraints for a matching and are classified by two dimensions:

similarity <> complement
hard constraints <> soft constraints

Some features need to be similar like the activity. Here reflexivity of mapping holds. On
the other hand, some features need to be complementary. For example, the relationship
between needs car/offers car. Here we speak of fitting and not of similarity. The
mapping of fitting can be modelled in such a way that the resulting scale corresponds
to a similarity mapping. So that both similarity and fitting can be processed together.
Hard constraints can be encoded using arbitrary complex boolean formulas on ob-
ject properties while sets of weighted propositions are used for soft constraints. For

requests
D —— mediator

~
v
R
J

request

. immediate
matchmaker - request
stalled request

creates

s
L
(

/

()

database activities
background user profiles
knowledge
v

Fig.2. Components of the matching framework and their interaction. The matchmaker is the
key component of the system. It uses the underlying database for a matching and propagates the
results to the mediator.

-

example, let’s assume that Mrs. Peters from scenario 1 only wants help from women
who are at least 30 years old (hard constraint). This can be formalised as:

other.gender = female A other.age > 30)

where other is a reference to a potential activity partner (similar to [6]). Consider the
request of Mrs. Peters finding someone assisting her in riding the public bus as activity
aj.

requires(ay, assistance) 2)

Requires relations are matched to corresponding provides relations of other activities.
Say ao given by another user, namely Aylia Ozdan. Both relation will be used to check,
if the activities fit, as:

provides(as, assistance) 3)

The matchmaker must know that the relations requires and provides are matchable.
However, matching two requires relations would not solve any problems. Whereas,
relations of the same type (e.g. likes) would match in a similarity check:

likes(other, nordic walking) ~ likes(other, walking) 4)

Using constraints, time and loaction related restrictions can also be modelled. For time
related restrictions it’s necessary to handle intervals to check temporal overlaps. Lo-
cation related restrictions calculate and weight distances. The distances are used for
ranking purposes. Matches which have a shorter distance are better matches as similar
pairs of matches but with greater distance.

5.2 Matching on Constraints

Checking hard constraints can be done by comparing the requires and provides re-
lations of both, activities and the user profiles. If a hard constraint is violated by an
activity description or an involved user profile, the activity will not be considered fur-
ther in this query. Matching hard constraints should be done before soft constraints are
considered. In this way hard constraints are used as filters to omit activities that are be-
ing violated. Soft constraints have to be checked only on the remaining set of activities
to calculate values of the matching quality.

Soft constraints have different weights, i. e. a value between 0.0 and 1.0 representing
its importance to a user. These weights are either derived from the user profiles or from
the user’s query where the requester can specify the importance of each constraint.

If a soft constraint doesn’t match, the matchmaker can

1. check the severity of the violation (e.g. the other’s age is 38 while the claimed age
is 40; this violation would not be as strong as if the other’s age was 12). Note that
this is only possible if a distance between the claimed and the actual value can be
obtained (here difference in ages).

2. combine the severity of the violation with the weight of the constraint and find out
how severe this violation is for the complete activity. Lower weights of constraints
might qualify severe violations and vice versa.

If we assume that the severity can be normalized to a value between 0.0 and 1.0
where 0.0 means no violation and 1.0 represents the hardest possible violation, the
matching violation V' can obtained by a sum

V:Zsc.wc 5)

ceC

where s. represents the normalized severity of the violation of feature ¢ and w,. the
weight given by the user. C is the set of all relevant constraints.

In this way, it is possible to calculate for every remaining activity (after checking
the hard constraints) a value of how well it fits to a query. A low V means a better
fitting. According to these values, target activities can be ranked and presented in the
corresponding order.

5.3 Knowledge from User Profiles and Missing Knowledge

We do not only distinguish hard and soft constraints, but also profile constraints and on
the fly constraints. These constraints refer to where they are defined. Profile constraints
are defined in user profiles and are used for recurring constraints only. If a user has

defined constraints via the profile, the system will take them into account automatically
when initiating a request. It’s a way of constraining the search implicit. On the other
hand, it should be possible to define constraints manually when doing a search. Those
constraints are specified on the fly and are valid only for a specific request. Manu-
ally constraining the search should have higher priority as constraints in profiles. For
this reason, different knowledge has different priority. Information given in profiles
have higher priority as background knowledge. A request has in turn higher priority as
profiles. So knowledge with higher priority overwrites lower priority. As a result, con-
straints defined in the profile influence the search results implicitly, whereas constraints
defined on the fly influence it explicitly.

Suppose, a user has ignore(fitness walking) in his profile the constraint specified
and searches for a stroll in the city. Walk in the park, nordic walking, and trekking
pole are in the system as available activities. Because walking isn’t available, the
only similar activities are a walk in the park, nordic walking, and trekking pole. The
matching service just offers a walk in the park’ as an alternative activity and dis-
cards the nordic walking and trekking pole, because they are on the ignore list via
ignore(fitness walking). Now suppose, the same user initiates an explicit request for
nordic walking. The request has higher priority as the constraint in the profile and
overwrites it. This approach allows users to find still activities explicit, even when the
profile states otherwise, by overwriting constraints.

Further, it is also important not to treat unmatched constraints as fails because of
missing information about the feasibility on the other side. Assume Lisa Gustafsson
wants to an opera, but needs someone with a car to go there. So the car is a requirement
that can be modelled as a (hard) constraint: requires(car). Someone in her neigh-
bourhood also wants to go to the opera. However, he doesn’t mention in his stalled
activity that he’s going to drive with his own car. The problem here is, Lisa Gustafsson
wouldn’t find him although the activities would match. In this case, the matchmaker
should identify the match and the missing fulfiller (car). Then, inform Lisa Gustafsson
about the possible match and propose her to contact the person. After contacting him,
Lisa Gustafsson is going to be able to go with him to the opera by car.

Missing information can be treated as wild cards which match everything. The
matchmaker doesn’t know if someone possesses a car, but the requirement is assumed
to be fulfilled. However, the activity is going to be marked as uncertain until the person
in question confirms he’s going to the concert by driving his own car.

5.4 Presentation of Results

The approach we’re going to use here is to present all matching results to the user. For
this purpose, the result list is divided into three subsets: matches with complete infor-
mation, matches with incomplete (missing) information, followed by matches violated
by hard constraints. The results within the first subset are ranked by violation of soft
constraints. Matches with no violations come first, then matches with low violation and
finally matches with high violation. To improve the subset of matches with missing
values the user is asked to provide additional information.

6 CONCLUSION AND FUTURE WORK

In this paper we proposed a framework for matchmaking similar activities. It is part
of a larger web-application called EMN-MOVES. The target group of the system are
older people and the overall goal is to improve their mobility and their social life. We
described two different kinds of scenarios the system might be confronted with to derive
the requirements of the framework. We have evaluated the requirements against existing
approaches and concluded none of these can fully support our needs for a platform
based on neighbourly help.

The presented framework will be the starting point for the development of a general
framework for matchmaking. Currently, we are designing an algorithm which allows to
calculate both similarity matches and best fits and incorporates a goodness criterion for
ranking the results.

Acknowledgement.This work is funded by BMBF grant 16SV5700K (Technology
and Innovation), Cooperation project “Europdische Metropolregion Niirnberg macht
mobil durch technische und soziale Innovationen fiir die Menschen in der Region”
(EMN-MOVES). We thank members of the senior citizen councils of Bamberg, Er-
langen, and Niirnberg. We also thank the reviewers for their helpful comments.

References

—

. Goldstone, R.L., Son, J.Y.: Similarity. Psychological Review 100 (2004) 254-278

2. Gentner, D., Markman, A.B.: Defining structural similarity. The Journal of Cognitive Sci-
ence 6 (2006) 1-20

3. Schmid, U., Siebers, M., Folger, J., Schineller, S., Seuss, D., Raab, M., Carbon, C.C., Faer-
ber, S.: A cognitive model for predicting aesthetical judgements as similarity to dynamic
prototypes

4. Whitty, M.T., Baker, A.J., Inman, J.A., eds.: Online matchmaking, Basingstoke (2007)

5. Shaw, D., Newson, P., O’Kelley, P., Fulton, W.: Social matching of game players online
(2005)

6. Raman, R., Livny, M., Solomon, M.: Matchmaking: Distributed resource management for
high throughput computing. In: High Performance Distributed Computing, 1998. Proceed-
ings. The Seventh International Symposium on, IEEE (1998) 140-146

7. Fenza, G., Loia, V., Senatore, S.: A hybrid approach to semantic web services matchmaking.
International Journal of Approximate Reasoning 48(3) (2008) 808-828

8. Banerjee, N., Chakraborty, D., Dasgupta, K., Mittal, S., Nagar, S., et al.: R-U-In?-exploiting
rich presence and converged communications for next-generation activity-oriented social
networking. In: Mobile Data Management: Systems, Services and Middleware, 2009.
MDM’09. Tenth International Conference on, IEEE (2009) 222-231

9. Abiteboul, S.: Querying Semi-Structured Data. In: Database Theory - ICDT 97, 6th
International Conference, Delphi, Greece, January 8-10, 1997, Proceedings. (1997) 1-18

10. Gonzélez-Castillo, J., Trastour, D., Bartolini, C.: Description Logics for Matchmaking of
Services. In: IN PROCEEDINGS OF THE KI-2001 WORKSHOP ON APPLICATIONS
OF DESCRIPTION LOGICS. (2001)

11. Horrocks, 1., Patel-Schneider, P.: Reducing OWL Entailment to Description Logic Satisfi-

ability. In Fensel, D., Sycara, K., Mylopoulos, J., eds.: The Semantic Web - ISWC 2003.

Volume 2870 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg (2003)

17-29

12. Miyamoto, S.: Information clustering based on fuzzy multisets. Inf. Process. Manage. 39(2)
(March 2003) 195-213

