Remote sensing

Selected  Publications (State 2024):

  • Ullmann, T.; M?ller, E.; Baumhauer, B.; Lange-Athinodorou, E.; Meister, J. (2022): A new Google Earth Engine tool for spaceborne detection of buried palaeogeographical features – examples from the Nile Delta (Egypt). E&G Quaternary Science Journal, 71, 243–247, https://doi.org/10.5194/egqsj-71-243-2022
  • Lanz, Peter; Marino, Armando; Brinkhoff, Thomas, K?ster, F. & M?ller, M. (2021): The Inflate SAR Campaign The Inflate SAR Campaign: Testing SAR Vessel Detection Systems for Refugee Rubber Inflatables. Remote Sens., 13(8), 1487,
    https://doi.org/10.3390/rs13081487
  • Ullmann, T., Nill, L., Schiestl, R., Trappe, J., Lange-Athinodorou, E., Baumhauer, R., and Meister, J. (2020): Mapping buried paleogeographical features of the Nile Delta (Egypt) using the Landsat archive, E&G Quaternary Science Journal, 69, 225–245, https://doi.org/10.5194/egqsj-69-225-2020
  • Mwaniki, M.W., M?ller, M.S. & Schellmann, G. (2015a): Application of remote sensing technologies to map the structural geology of central Region of Kenya. – IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8: 1855-1867, https://ieeexplore.ieee.org/document/7066226
  • Mwaniki, M.W., M?ller, M.S. & Schellmann, G. (2015b): Landslide inventory knowledge based multi-sources classification time series mapping: A case study of Central Region of Kenya. – GI Forum –Journal for Geographic Information Science, 1: 209-219,  (DOI: 10.13140/RG.2.1.1645.4241).
  • Mwaniki, M.W., M?ller, M.S. & Schellmann, G. (2015c): A comparison of Landsat 8 (OLI) and Landsat 7 (ETM+) in mapping geology and visualising lineaments: A case study of central region Kenya. – The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-7/W3, 2015: 897-903; Berlin (36th International Symposium on Remote Sensing of Environment, 11-15 May 2015; DOI: 10.5194/isprsarchives-XL-7-W3-897-2015).
  • Seitz, R., Troycke, A., Grubert, B. & Rebhan, P. (2010): Wo stehen Bayerns Fichten? – IN: LWF, Waldforschung aktuell 75: 62-63, ISSN 1435-4098, mediatum.ub.tum.de/doc/1320414/209fcf8um1rdyo21r2xbewwm8.a75_waldpaedagogik_web.pdf